Skip to main content

Le groupe K3(Z[∈]) n’a pas de p-torsion pour p ≠ 2 et 3

Part I

  • 512 Accesses

Part of the Lecture Notes in Mathematics book series (LNM,volume 966)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0062171
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-39553-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. W. G. DWYER, Twisted homological stability for general linear groups, Ann. of Math. 111 (1980), 239–251.

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. L. EVENS et E. M. FRIEDLANDER, On K*(Z/p2) and related homology groups, à paraître aux Trans. A.M.S.

    Google Scholar 

  3. W. van der KALLEN, Le K2 des nombres duaux, C.R.Ac.Sc. Paris 273 (1971), 1204–1207.

    MATH  Google Scholar 

  4. Chr. KASSEL, Un calcul d’homologie du groupe linéaire général, C.R.Ac.Sc. Paris 288 (1979), 481–483.

    MathSciNet  MATH  Google Scholar 

  5. Chr. KASSEL, Homologie du groupe linéaire général et K-théorie stable, C.R.Ac.Sc. Paris 290 (1980), 1041–1044.

    MathSciNet  MATH  Google Scholar 

  6. Chr. KASSEL, K-théorie relative d’un idéal bilatère de carré nul, Proc. Conf. Alg. K-theory, Evanston 1980, Springer Lect. Notes in Math.

    Google Scholar 

  7. R. LEE et R. H. SZCZARBA, The group K3(Z) is cyclic of order 48, Ann. of Math. 104 (1976), 31–60.

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. R. LEE et R. H. SZCZARBA, On the homology and cohomology of congruence subgroups, Inv. Math. 33 (1976), 15–53.

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. V. P. SNAITH, On K3 of dual numbers, préprint.

    Google Scholar 

  10. C. SOULE, Rational K-theory of the dual numbers of a ring of algebraic integers, Proc. Conf. Alg. K-theory, Evanston 1980, Springer Lect. Notes.

    Google Scholar 

  11. F. WALDHAUSEN, Algebraic K-theory of topological spaces I, A.M.S. Proc. Symp. Pure Math. 32 (1978), 35–60.

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. J. H. C. WHITEHEAD, A certain exact sequence, Ann. of Math. 52 (1950),51.

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Kassel, C. (1982). Le groupe K3(Z[∈]) n’a pas de p-torsion pour p ≠ 2 et 3. In: Dennis, R.K. (eds) Algebraic K-Theory. Lecture Notes in Mathematics, vol 966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062171

Download citation

  • DOI: https://doi.org/10.1007/BFb0062171

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11965-4

  • Online ISBN: 978-3-540-39553-9

  • eBook Packages: Springer Book Archive