Skip to main content

K2(o) for two totally real fields of degree three and four

Part I

Part of the Lecture Notes in Mathematics book series (LNM,volume 966)

Keywords

  • Zeta Function
  • Number Field
  • Real Field
  • Bernoulli Polynomial
  • Algebraic Number Field

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0062170
  • Chapter length: 3 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-39553-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.95
Price excludes VAT (USA)

References

  1. H. Hasse, Arithmetische Bestimmung von Grundheinheit und Klassenzahl in zyklischen, kubischen und biquadratischen Zahlkörpern, Abh. Deutsche Akad. Wiss. Berlin, Math. Naturwiss. Kl. 2 (1948), 1–95.

    MathSciNet  Google Scholar 

  2. J. Hurrelbrink, On K2(o) and presentations of SLn(o) in the real quadratic case, J. reine angew. Math. 319 (1980), 213–220.

    MathSciNet  MATH  Google Scholar 

  3. F. Kirchheimer, Über explizite Präsentationen Hilbertscher Modulgruppen zu totalreellen Körpern der Klassenzahl ein, J. reine angew. Math. 321 (1981), 120–137.

    MathSciNet  MATH  Google Scholar 

  4. C. L. Siegel, Additive Theorie der Zahlkörper I, Math. Annalen 87 (1922), 1–35.

    CrossRef  MATH  Google Scholar 

  5. J. Tate, Relations between K2 and Galois cohomology, Inv. math. 36 (1976), 257–274.

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Hurrelbrink, J. (1982). K2(o) for two totally real fields of degree three and four. In: Dennis, R.K. (eds) Algebraic K-Theory. Lecture Notes in Mathematics, vol 966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062170

Download citation

  • DOI: https://doi.org/10.1007/BFb0062170

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11965-4

  • Online ISBN: 978-3-540-39553-9

  • eBook Packages: Springer Book Archive