Skip to main content

Affine lie algebras and algebraic K-theory

Part I

  • 532 Accesses

Part of the Lecture Notes in Mathematics book series (LNM,volume 966)

Keywords

  • Simplicial Complex
  • Central Extension
  • Homotopy Type
  • Valuation Ring
  • Chevalley Group

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0062168
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-39553-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Anderson, M. Karoubi and J. Wagoner, Higher algebraic K-theories, Trans. Amer. Math. Soc. 226 (1977) 209–225.

    MathSciNet  MATH  Google Scholar 

  2. N. Bourbaki, Groupes et algèbres de Lie, Ch. IV, V, VI, Hermann, Paris, 1968.

    MATH  Google Scholar 

  3. R. Dennis and M. Stein, K2 of discrete valuation rings, Adv. in Math. 18 (1975) 182–238.

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. I. Frenkel and V. Kac, Basic representations of affine Lie algebras and dual resonance models, Inv. Math. 62 (1980), 23–66.

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. H. Garland, p-adic curvature and the cohomology of discrete subgroups of p-adic groups, Ann. Math. 97 (1973) 375–423.

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. H. Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), 480–551.

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. H. Garland, The arithmetic theory of loop groups, Publ. Math. IHES 52(1980), 181–312.

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. J. Graham, Continuous symbols on fields of formal power series, Algebraic K-theory II, Lecture Notes in Math. vol. 342, Springer Verlag, Berlin and New York, 1973, 474–486.

    Google Scholar 

  9. N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. IHES 25 (1968) 5–48.

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. V. Kac, Simple irreducible graded Lie algebras of finite growth, Math. of the USSR-Izvestija 2(6)(1968)1271–1311.

    CrossRef  MATH  Google Scholar 

  11. V. Kac, Infinite-dimensional Lie algebras and Dedekind’s η-function, Func. Anal. and its Applications 8 (1974) 68–70.

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. V. Kac, Infinite root systems, representations of graphs and invariant theory, Inv. Math. 56(1980) 57–92.

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. V. Kac and D. Peterson, Affine Lie algebras and Hecke modular forms, preprint Bull. Amer. Math. Soc. 3 (1980), 1057–1061.

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. J. Lepowsky, Generalized Verma modules, loop space cohomology and Macdonaldtype identities, Ann. scient. Ec. Norm. Sup. 4(12)(1969) 169–234.

    MathSciNet  MATH  Google Scholar 

  15. I. Macdonald, Affine root systems and Dedekind’s η-function, Inv. Math. 15(1972) 91–143.

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. R. Moody, A new class of Lie algebras, J. Algebra 10(1968), 211–230.

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. C. Moore, Group extensions of p-adic and adelic linear groups, Publ. Math. IHES 35(1968) 157–222.

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. J.-P. Serre, Algèbres de Lie semi-simples complexes, Benjamin, New York, 1966.

    MATH  Google Scholar 

  19. L. Solomon, The Steinberg character of a finite group, Theory of finite groups, Benjamin, New York, 1969, 213–221.

    Google Scholar 

  20. A. Suslin, Stability in algebraic K-theory, these proceedings.

    Google Scholar 

  21. R. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Camb. Phil. Soc. 85(1979) 91–109.

    MathSciNet  CrossRef  MATH  Google Scholar 

  22. I. Volodin, Algebraic K-theory as an extraordinary homology theory on the cateogry of associative rings with unit, Math. of the USSR-Izvestija, 5(4)(1971) 859–887.

    CrossRef  MATH  Google Scholar 

  23. I. Volodin, Algebraic K-theory, Uspehki Math. Nauk #4, 1972, 207–208.

    Google Scholar 

  24. J. Wagoner, Buildings, stratifications and higher K-theory, Algebraic K-theory I: Higher K-theories, Lecture Notes in Math. vol. 341, Springer Verlag, Berlin and New York, 1973, 148–165.

    MATH  Google Scholar 

  25. J. Wagoner, Homotopy theory for the p-adic special linear group, Comment. Math. Helvetici 50(1975) 535–559.

    MathSciNet  CrossRef  MATH  Google Scholar 

  26. J. Wagoner, Delooping the continuous K-theory of a valuation ring, Pac. J. Math. 65(1976) 533–538.

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Hiller, H. (1982). Affine lie algebras and algebraic K-theory. In: Dennis, R.K. (eds) Algebraic K-Theory. Lecture Notes in Mathematics, vol 966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062168

Download citation

  • DOI: https://doi.org/10.1007/BFb0062168

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11965-4

  • Online ISBN: 978-3-540-39553-9

  • eBook Packages: Springer Book Archive