Skip to main content

Some applications of the metric entropy condition to harmonic analysis

Part of the Lecture Notes in Mathematics book series (LNM,volume 995)

Keywords

  • Banach Space
  • Gaussian Process
  • Sample Path
  • Banach Lattice
  • Orlicz Space

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0061891
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   29.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-40036-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   39.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bennett. Intermediate spaces and the class L log+ L. Arkiv för Matematik 11 (1973) 215–228.

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. J. Bergh, J. Löfström. Interpolation spaces. Springer Verlag, Berlin, Heidelberg, New York (1976).

    CrossRef  MATH  Google Scholar 

  3. R. M. Dudley. The size of compact subsets of Hilbert space and continuity of Gaussian processes. Journal of Funct. Analysis 1 (1967) 290–330.

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. X. Fernique. Régularité des trajectoires des processus gaussiens. Ecole d’Ete de ST Flour. Springer Lecture Notes no480.

    Google Scholar 

  5. A. Garsia. A remarkable inequality and the uniform convergence of Fourier series. Indiana Univ. Math Journal 25 (1976) 85–102.

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. N. Kôno. Sample paths properties of stochastic processes. J. Math Kyoto Univ. 20 (1980) 295–313.

    MathSciNet  MATH  Google Scholar 

  7. M. B. Marcus and G. Pisier. Random Fourier series with Applications to Harmonic Analysis. Annals of Math Studies. no101 (1981) Princeton University Press.

    Google Scholar 

  8. G. Pisier. Sur l’espace des series de Fourier aléatoires presque sûrement continues. Exposé no 17–18, Seminaire sur la géométrie des espaces de Banach. Ecole Polytechnique, Palaiseau, 1977/78.

    Google Scholar 

  9. G. Pisier. A remarkable homogeneous Banach algebra. Israel J. Math 34 (1979) 38–44.

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. G. Pisier. Conditions d’entropie assurant la continuité de certains processus et applications a l’analyse harmonique. Seminaire d’analyse fonctionnelle. Expose no13–14. Ecole Polytechnique, Palaiseau, 1979/80.

    Google Scholar 

  11. G. Pisier. De nouvelles caractérisations des ensembles de Sidon. Advances in Maths. Supplementary Studies. (1981) Vol. 7B, p. 685.

    MathSciNet  MATH  Google Scholar 

  12. J. H. Wells, L. R. Williams. Embeddings and extensions in analysis, Springer Verlag (1975), Ergebnisse Band 84.

    Google Scholar 

  13. M. Zafran. The dichotomy problem for homogeneous Banach algebras. Annals of Maths. 108 (1978) 97–105.

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. M. B. Marcus and G. Pisier. Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes. To appear.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Pisier, G. (1983). Some applications of the metric entropy condition to harmonic analysis. In: Blei, R.C., Sidney, S.J. (eds) Banach Spaces, Harmonic Analysis, and Probability Theory. Lecture Notes in Mathematics, vol 995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0061891

Download citation

  • DOI: https://doi.org/10.1007/BFb0061891

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12314-9

  • Online ISBN: 978-3-540-40036-3

  • eBook Packages: Springer Book Archive