Skip to main content

Lp-Lq mapping properties of the radon transform

Part of the Lecture Notes in Mathematics book series (LNM,volume 995)

Keywords

  • Lebesgue Measure
  • Lebesgue Space
  • Weak Type
  • Finite Measure
  • Integral Geometry

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0061889
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   29.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-40036-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   39.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Oberlin and E. Stein, Mapping properties of the Radon transform. Indiana Univ. Math. J. 31 [1982], to appear.

    Google Scholar 

  2. E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, NJ, 1971.

    MATH  Google Scholar 

  3. L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), 161–175.

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Oberlin, D.M. (1983). Lp-Lq mapping properties of the radon transform. In: Blei, R.C., Sidney, S.J. (eds) Banach Spaces, Harmonic Analysis, and Probability Theory. Lecture Notes in Mathematics, vol 995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0061889

Download citation

  • DOI: https://doi.org/10.1007/BFb0061889

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12314-9

  • Online ISBN: 978-3-540-40036-3

  • eBook Packages: Springer Book Archive