Skip to main content

Remarks on von Neumann’s inequality

Part of the Lecture Notes in Mathematics book series (LNM,volume 995)

Abstract

This article contains a rather personal exposition of various aspects of Von Neumann’s inequality and its generalizations. Included are a number of observations made by this author and doubtless also by others. The purpose of the article is to stimulate interest in understanding the situation for three or more commuting contractions.

Keywords

  • Hilbert Space
  • Positive Definiteness
  • Cauchy Kernel
  • Disc Algebra
  • Unitary Dilation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0061886
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   29.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-40036-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   39.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Von Neumann, Eine Spectraltheorie für allgemeine Operatoren eines unitären Raumes, Math Nachr 4 (1951) 258–281.

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. S. Fisher, The convex hull of finite Blashke products, Bull A.M.S. 74 (1968) 1128–1129.

    CrossRef  MATH  Google Scholar 

  3. B. Sz-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland 1970.

    Google Scholar 

  4. P. R. Halmos, Shifts on Hilbert Space, J. reine angew Math 208 (1961) 102–112.

    MathSciNet  MATH  Google Scholar 

  5. S. W. Drury, A Generalization of Von Neumann’s inequality to the complex ball, Proc A.M.S., 68/3 (1978) 300–304.

    MathSciNet  MATH  Google Scholar 

  6. M. J. Crabb and A. M. Davie, Von Neumann’s inequality for Hilbert Space operators, Bull London Math Soc. 7 (1975) 49–50.

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. T. Ando, On a pair of commutative contractions, Acta Sci. Math 24 (1963) 88–90.

    MathSciNet  MATH  Google Scholar 

  8. N. Th. Varopoulos, On a class of Banach Algebras, Lecture Notes in Math. No. 512, (1975) 180–184.

    Google Scholar 

  9. N. Th. Varopoulos, On an inequality of Von Neumann and an application of the metric theory of tensor products to operator theory, J. Func. Analysis, 16 (1974) 83–100.

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Drury, S.W. (1983). Remarks on von Neumann’s inequality. In: Blei, R.C., Sidney, S.J. (eds) Banach Spaces, Harmonic Analysis, and Probability Theory. Lecture Notes in Mathematics, vol 995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0061886

Download citation

  • DOI: https://doi.org/10.1007/BFb0061886

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12314-9

  • Online ISBN: 978-3-540-40036-3

  • eBook Packages: Springer Book Archive