Projections onto L1 subspaces of L1(μ)

  • Dale E. Alspach
  • William B. Johnson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 995)

Abstract

If X is a L1, 1+ɛ subspace of L1(μ) and ɛ > 0 is sufficiently small, then X is complemented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Dor, On Projections in L1, Annals of Math. 102 (1975), 463–474.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    L. Dor, On Embedding of Lp-spaces in Lp-spaces, Dissertation, The Ohio State University, 1975.Google Scholar
  3. [3]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.CrossRefMATHGoogle Scholar
  4. [4]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin, 1979.CrossRefMATHGoogle Scholar
  5. [5]
    A. Pełczyński, Projections in certain Banach Spaces, Studia Math 19 (1960), 209–228.MathSciNetMATHGoogle Scholar
  6. [6]
    M. Zippin, L 1 subspaces of ℓ1, Israel J. Math 22 (1975), 110–117.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Dale E. Alspach
    • 1
    • 2
  • William B. Johnson
    • 3
    • 4
  1. 1.Department of MathematicsOklahoma State UniversityStillwater
  2. 2.Department of MathematicsUniversity of ConnecticutStorrs
  3. 3.Department of MathematicsOhio State UniversityColumbus
  4. 4.Department of MathematicsTexas A&M UniversityCollege Station

Personalised recommendations