Advertisement

Classification of subshifts of finite type

  • R. F. Williams
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 318)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    R. Bowen, Markov partitions for axiom A diffeomorphisms, Amer. J. Math. 42 (1970), 725–747.MathSciNetCrossRefGoogle Scholar
  2. [2]
    __ and O. Lanford, Zeta functions of restrictions of the shift transformation, ibid, pp. 43–50.Google Scholar
  3. [3]
    W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368–378.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    _____, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55–66.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    S. Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (A symposium in honor of Marston Morse), Princeton University Press, Princeton, N. J., pp. 63–80.Google Scholar
  6. [6]
    R. Williams, Classification of symbol spaces of finite type, Bull. Amer. Math. Soc. 77 (1971), 439–443.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    _____, Classification of subshifts of finite type, to appear. Preprint, Northwestern University.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • R. F. Williams
    • 1
  1. 1.Northwestern UniversityUSA

Personalised recommendations