Advertisement

Class properties of dynamical systems

  • William Parry
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 318)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Abramov. Metric automorphisms with quasi-discrete spectrum. Izv. Akad. Nauk. SSSR 26 (1962) 513–530=A.M.S. Transl. Ser. 2. 39(1964) 37–56.MathSciNetzbMATHGoogle Scholar
  2. 2.
    R. Ellis. Lectures on topological dynamics, Benjamin, New York, 1969.zbMATHGoogle Scholar
  3. 3.
    F. Hahn and W. Parry. Minimal dynamical systems with quasidiscrete spectrum. J.L.M.S. 40(1965) 309–323.MathSciNetzbMATHGoogle Scholar
  4. 4.
    F. Hahn and W. Parry. Some characteristic properties of dynamical systems with quasi-discrete spectra. Math. Systems. Th.2. (1968) 179–190.MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. R. Halmos and J. Von Neumann. Operator methods in classical mechanics. II. Ann. of Math. (43) 1942. 332–350.Google Scholar
  6. 6.
    G. W. Mackey. Ergodic transformation groups with a pure point spectrum. Ill. J. Math. 8 (1964) 593–600.MathSciNetzbMATHGoogle Scholar
  7. 7.
    D. Ornstein. Factors of Bernoulli shifts are Bernoulli shifts. Advances in Math. (1970) 349–364.Google Scholar
  8. 8.
    W. Parry. Compact abelian group extensions of discrete dynamical systems. Z. Wahrscheinlichkeitstheorie verw. Geb. 13 (1969) 95–113.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    W. Parry. Dynamical representations in nimanifolds. (To appear).Google Scholar
  10. 10.
    R. F. Williams. Classification of symbol spaces of finite type. (To appear.)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • William Parry
    • 1
  1. 1.University of WarwickUSA

Personalised recommendations