Advertisement

Locally connected almost periodic minimal sets

  • Joseph F. Kent
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 318)

Keywords

Periodic Function Topological Group Periodic Flow Character Group Integral Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    J. Auslander and F. Hahn, Point transitive flows, algebras of functions and the Bebutor system, Fund. Math. 60 (1967), 117–137.MathSciNetzbMATHGoogle Scholar
  2. 2.
    A. S. Besicovitch, Almost Periodic Functions, Dover Pub., Inc., 1954.Google Scholar
  3. 3.
    M. L. Cartwright, Almost periodic flows and solutions of differential equations, Proc. London Math. Soc., 17 (1967), 355–380.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    R. Ellis, Lectures on Topological Dynamics, W. A. Benjamin, Inc., New York, 1969.zbMATHGoogle Scholar
  5. 5.
    W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Coll. Pub. 36, Providence, R.I., 1955.Google Scholar
  6. 6.
    N. Minorsky, Nonlinear Oscillations, Van Nostrand Pub., Princeton, N. J., 1962.zbMATHGoogle Scholar
  7. 7.
    J. Moser, On the theory of quasiperiodic motions, SIAM Review, 8 (1966), 145–172.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    V. V. Nemytskii and V. V. Stepanof, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, N. J., 1960.zbMATHGoogle Scholar
  9. 9.
    L. S. Pontryagin, Topological Groups (2nd Edition), Gordon and Breach, Science Pub., New York, 1966.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Joseph F. Kent
    • 1
  1. 1.University of FloridaGainesville

Personalised recommendations