Advertisement

The unique ergodigity of the horocycle flow

  • Harry Furstenberg
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 318)

Keywords

Harmonic Function Invariant Measure Homogeneous Space Geodesic Flow Positive Harmonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    L. Auslander, L. Green, and F. Hahn, Flows on Homogeneous Spaces. Annals of Mathematics Studies No. 53 (1963), Princeton.Google Scholar
  2. [2]
    H. Furstenberg, "Strict ergodicity and transformations of the torus", American Journal of Mathematics 83 (1961) 573–601MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    H. Furstenberg and I. Tzkoni, "Spherical functions and integral geometry", Israel Journal of Mathematics, 10 (1971) 327–338.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    G. A. Hedlund, "On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature", Annals of Mathematics 35 (1934) 787–808.MathSciNetCrossRefGoogle Scholar
  5. [5]
    G. A. Hedlund, "A metrically transitive group defined by the modular group", Americal Journal of Mathematics, vol. 57 (1935) 668–678.MathSciNetCrossRefGoogle Scholar
  6. [6]
    G. A. Hedlund, "Fuchsian groups and transitive horocycles", Duke Mathematical Journal 2 (1936) 530–542.MathSciNetCrossRefGoogle Scholar
  7. [7]
    E. Hopf, Ergodentheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete 5 (1937).Google Scholar
  8. [8]
    C. C. Moore, "Ergodicity of flows on homogeneous spaces", American Journal of Mathematics 88 (1965) 154–178.CrossRefGoogle Scholar
  9. [9]
    A. Zygmund, Trigonometric Series, vol. I second edition, 1959, Cambridge.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Harry Furstenberg
    • 1
    • 2
  1. 1.Berkeley
  2. 2.JerusalemIsrael

Personalised recommendations