Equivalence theorems for nonlinear finite-difference methods

II. Näherungsverfahren Für nichtlineare Anfangswertaufgaben Und Anfangsrandwertaufgaben
Part of the Lecture Notes in Mathematics book series (LNM, volume 267)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ANSORGE, R.: Konvergenz von Differenzenverfahren für quasilineare Anfangswertaufgaben. Numer. Math. 13, 217–225 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    ANSORGE, R., HASS, R.: Konvergenz von Differenzenverfahren für lineare und nichtlineare Anfangswertaufgaben. Lecture Notes in Mathematics 159. Berlin: Springer-Verlag 1970.zbMATHGoogle Scholar
  3. [3]
    COLLATZ, L.: The numerical treatment of differential equations. Berlin: Springer-Verlag 1960.zbMATHCrossRefGoogle Scholar
  4. [4]
    COLLATZ, L.: Funktionalanalysis und numerische Mathematik. Berlin: Springer-Verlag 1964.zbMATHCrossRefGoogle Scholar
  5. [5]
    GODUNOV, S.K., RYABENKI, V.S.: Theory of difference schemes. Amsterdam: North-Holland publishing company 1964.zbMATHGoogle Scholar
  6. [6]
    HASS, R.: Stabilität und Konvergenz von Differenzverfahren für halblineare Probleme. Thesis, Hamburg University 1971.Google Scholar
  7. [7]
    HENRICI, P.: Discrete variable methods in ordinary differential equations. New York: J. Wiley & Sons 1962.zbMATHGoogle Scholar
  8. [8]
    HENRICI, P.: Elements of numerical analysis. New York: J. Wiley & Sons 1964.zbMATHGoogle Scholar
  9. [9]
    JOHN, F.: On integration of parabolic equations by difference methods. Comm. Pure Appl. Math. 5, 155–211 (1952).MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    KANTOROVICH, L.V., Akilov, G.P.: Functional analysis in normed spaces. Oxford: Pergamon Press 1964.zbMATHGoogle Scholar
  11. [11]
    KINNEBROCK, W.: Stabilität und Konvergenz nichtlinearer Differenzenoperatoren bei Anfangswertaufgaben. Report, Gesellschaft für Kernforshung mbH Karlsruhe 1971.Google Scholar
  12. [12]
    RICHTMYER, R.D., MORTON, K.W.: Difference methods for initial-value problems. New York: John Wiley & Sons 1967.zbMATHGoogle Scholar
  13. [13]
    SPIJKER, M.N.: Stability and convergence of finite-difference methods. Thesis, Leiden University 1968.Google Scholar
  14. [14]
    STETTER, H.J.: Asymptotic expansions for the error of discretization algorithms for nonlinear functional equations. Numer. Math. 7, 18–31 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    STETTER, H.J.: Stability of nonlinear discretization algorithms. In: Numerical solution of partial differential equations, ed. J.H. Bramble. New York: Academic Press 1966.Google Scholar
  16. [16]
    STRANG, W.G.: Difference methods for mixed boundary-value problems. Duke Math. J. 27, 221–231 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    STRANG, G.: Accurate partial difference methods II, Non-linear problems. Numer. Math. 6, 37–46 (1964).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

There are no affiliations available

Personalised recommendations