On Markov process corresponding to Boltzmann's equation of Maxwellian gas

  • Hiroshi Tanaka
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 330)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Carleman, Problèmes Mathematiques dans la Théorie Cinétique des Gaz, Uppsala, 1957.Google Scholar
  2. [2]
    K. Itô, On stochastic differential equations, Mem. Amer. Math. Soc. No. 4 (1951).Google Scholar
  3. [3]
    D. P. Johnson, On a class of stochastic processes and its relationship to infinite particle gases, Trans. Amer. Math. Soc. 132(1968), 275–295.MathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Kac, Foundation of Kinetic theory, Proc. Third Berkeley Symp. on Math. Stat. and Prob. 3, 171–197.Google Scholar
  5. [5]
    H. P. McKean, Jr., A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. 56(1966), 1907–1911.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    H. P. McKean, Jr., An exponential formula for solving Boltzmann's equation for a Maxwellian gas, J. Combinatorial Theory 2(1967), 358–382.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    H. P. McKean, Jr., Propagation of chaos for a class of non-linear parabolic equations, Lecture series in Differential Equations, session 7, Catholic Univ. (1967).Google Scholar
  8. [8]
    A. Ya. Povzner, On Boltzmann's equation in the kinetic theory of gases, Mat. Sb. 58(1962), 63–86.MathSciNetGoogle Scholar
  9. [9]
    Y. Takahashi, Markov semigroups with simplest interactions I, II (to appear in Proc. Japan Acad.).Google Scholar
  10. [10]
    H. Tanaka, Propagation of chaos for certain purely discontinuous Markov processes with interactions, J. Fac. Sci., Univ. of Tokyo, Sec. I 17(1970), 259–272.MathSciNetMATHGoogle Scholar
  11. [11]
    T. Ueno, A class of Markov processes with interactions I, Proc. Japan Acad. 45(1969), 641–646; II, ibd., 995–1000.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    T. Ueno, A path space and the propagation of chaos for a Boltzmann's gas model, Proc. Japan Acad., 47(1971), 529–533.MathSciNetCrossRefGoogle Scholar
  13. [13]
    G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechanics, Amer. Math. Soc. Providence 1963.Google Scholar
  14. [14]
    E. Wild, On Boltzmann's equation in the kinetic theory of gases, Proc. Camb. Phil. Soc. 47(1951), 602–609.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Hiroshi Tanaka
    • 1
  1. 1.Department of MathematicsHiroshima UniversityJapan

Personalised recommendations