Skip to main content

Logical and set theoretical tools in elementary topoi

Part III (Presented At A Conference In Berlin, October 1973, Organized By Ch. Maurer; Manuscripts Received By The Editors In June 1974)

Part of the Lecture Notes in Mathematics book series (LNM,volume 445)

Keywords

  • Recursive Relation
  • Free Variable
  • Intuitionistic Logic
  • Springer Lecture Note
  • Inductive Relation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0061299
  • Chapter length: 50 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-37495-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. Bénabou, Catégories et logiques faibles, Tagungsbericht 30/1973 Oberwolfach

    Google Scholar 

  2. M. C. Bunge, Boolean topoi and the independence of Suslin's hypothesis, Preprint No. 25, Aarhus Universitet 1972/73

    Google Scholar 

  3. J. C. Cole, Categories of sets and models of set theory, Ph.D. Thesis, University of Sussex 1971

    Google Scholar 

  4. P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972). 1–76

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. J. Gray, The meeting of the Midwest Category Seminar in Zürich August 24–30, Springer Lecture Notes 195 (1971), 248–255

    MATH  Google Scholar 

  6. A. Kock-Ch. J. Mikkelsen, Non-standard extensions in the theory of toposes, Preprint No. 25, Aarhus Universitet 1971/72

    Google Scholar 

  7. A. Kock-Ch. J. Mikkelsen, Topos-theoretic factorization of non-standard extensions, Preprint Aarhus Universitet 1972

    Google Scholar 

  8. A. Kock-P. Lécouturier-Ch. J. Mikkelsen, Some topos theoretic concepts of finiteness, to appear in Springer Lecture Notes

    Google Scholar 

  9. A. Kock-G. C. Wraith, Elementary toposes, Lecture Notes No. 30, Aarhus Universitet 1971

    Google Scholar 

  10. F. W. Lawvere, An elementary theory of the category of sets, Proc. Nat. Acad. Sc. 51 (1964), 1506–1511

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. F. W. Lawvere, Quantifiers and sheaves, Actes Congrès Int. (Nice 1970) 1 (1971), 329–334

    MathSciNet  MATH  Google Scholar 

  12. F. W. Lawvere, Toposes, algebraic geometry and logic, Springer Lecture Notes 274 (1972), 1–12

    MathSciNet  Google Scholar 

  13. F. W. Lawvere, Continuously variable sets; Algebraic geometry = Geometric logic, to appear in Proc. Logic Coll. Bristol 1973

    Google Scholar 

  14. F. W. Lawvere-M. Tierney, Elementary topos, Lectures at the Midwest Category Seminar, Zürich 1970, summarized in [5]

    Google Scholar 

  15. P. Lécouturier, Quantificateur dans le topos élémentaires, Preprint, Université Zaïre, Kinshasa 1971/72

    Google Scholar 

  16. Ch. Maurer, Universen als interne Topoi, Dissertation, Universität Bremen 1974

    Google Scholar 

  17. Ch. Mikkelsen, Characterization of an elementary topos, Tagungsbericht Oberwolfach 30/1972

    Google Scholar 

  18. Ch. Mikkelsen, On the internal completeness of elementary topoi Tagungsbericht Oberwolfach 30/1973

    Google Scholar 

  19. Ch. Mikkelsen, Thesis, to appear

    Google Scholar 

  20. W. Mitchell, Boolean topoi and the theory of sets, J. Pure Appl. Alg. 2 (1972), 261–274

    MathSciNet  CrossRef  MATH  Google Scholar 

  21. G. Osius, Kategorielle Mengenlehre: Eine Charakterisierung der Kategorie der Klassen und Abbildungen, to appear in Math. Annalen

    Google Scholar 

  22. G. Osius, Categorical set theory: A characterization of the category of sets, to appear in J. Pure Appl. Alg.

    Google Scholar 

  23. G. Osius, The internal and external aspect of logic and set theory in elementary topoi, to appear in Cah. Top. Géom. Diff.

    Google Scholar 

  24. R. Paré, Colimits in topoi, Preprint, Dalhousie University 1973

    Google Scholar 

  25. H. Rasiowa-R. Sikorski, The mathematics of metamathematics, PWN-Polish Scientific Publishers, Warzawa 1962

    MATH  Google Scholar 

  26. M. Tierney, Sheaf theory and the continuum hypothesis, Springer Lecture Notes 274 (1972), 13–42

    MathSciNet  MATH  Google Scholar 

  27. M. Tierney, Foundations of analysis in topos, Tagungsbericht Oberwolfach 30/1972

    Google Scholar 

  28. G. Van de Wauw-De Kinder, Some properties concerning the natural number object in a topos, Tagungsbericht Oberwolfach 30/1973

    Google Scholar 

  29. G. C. Wraith, Lectures on elementary topoi, to appear in Springer Lecture Notes

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1975 Springer-Verlag

About this paper

Cite this paper

Osius, G. (1975). Logical and set theoretical tools in elementary topoi. In: Lawvere, F.W., Maurer, C., Wraith, G.C. (eds) Model Theory and Topoi. Lecture Notes in Mathematics, vol 445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0061299

Download citation

  • DOI: https://doi.org/10.1007/BFb0061299

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07164-8

  • Online ISBN: 978-3-540-37495-4

  • eBook Packages: Springer Book Archive