Skip to main content

Logical categories, semantical categories and topoi

Part I (Manuscripts Received By The Editors In October 1973)

Part of the Lecture Notes in Mathematics book series (LNM,volume 445)

Keywords

  • Semantical Category
  • Deductive System
  • Universal Quantification
  • High Order Statement
  • Springer Lecture Note

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0061294
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-37495-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 Bibliography

  1. Barr, M.: Exact categories, Springer Lecture Notes 236, (1971), p. 1–119

    MATH  Google Scholar 

  2. Freyd, P.: Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972), p. 1–76

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Joyal, A.: The Gödel-Kripke-Mitchell-Barr-embedding theorem, Talk at the conference on category theory in Oberwolfach, July 72

    Google Scholar 

  4. Kock, A.; Mikkelsen, C.J.: Non-standard extensions in the theory of toposes, Aarhus Universitet Preprint Series 25 (1971/72)

    Google Scholar 

  5. Kock, A.; Wraith, G.C.: Elementary toposes, Aarhus Universitet Lecture Notes Series 30 (1971)

    Google Scholar 

  6. Lambek, J.: Deductive systems and categories I, II Math. Systems Theory 2 (1968), p. 287–318; Springer Lecture Notes 86 (1969), p. 76–122

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. Lambek, J.: Deductive systems and categories, Springer Lecture Notes 274 (1972), p. 57–82

    MathSciNet  MATH  Google Scholar 

  8. Lawvere, F.W.: Functorial semantics of elementary theories, J. of Symb. Logic 31 (1966), p. 294 (abstract)

    Google Scholar 

  9. Lawvere, F.W.: Theories as categories and the completeness theorem, J. of Symb. Logic 32 (1967), p. 562 (abstract)

    Google Scholar 

  10. Lawvere, F.W.: Equality in hyperdoctrines and comprehension scheme as an adjoint functor, Proc. of the AMS, Symposia in Pure Math. 17, (1970), p. 1–14

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Lawvere, F.W.: Quantifier and sheaves, Actes du Congrès Intern. des Math., Nice (1970), tome 1, p. 329–334

    Google Scholar 

  12. Lawvere, F.W.: Introduction to Springer Lecture Notes 274 (1972), p. 1–12

    MathSciNet  Google Scholar 

  13. Mikkelsen, C.J.: Finite colimits in toposes, Talk at the conference on category theory in Oberwolfach, July 1972

    Google Scholar 

  14. Reyes, G.E.: Logique via faisceaux, Talk at the Congrès de Logique in Orléans, Sept. 1972

    Google Scholar 

  15. Robinson, A.: Non-standard analysis, North-Holland (1966)

    Google Scholar 

  16. Tierney, M.: Sheaf theory and the continuum hypothesis, Springer Lecture Notes 274 (1972), p. 13–42

    MathSciNet  MATH  Google Scholar 

  17. Volger, H.: Logical categories, dissertation, Dalhousie University, Halifax, N.S. (1971)

    MATH  Google Scholar 

  18. Volger, H.: Completeness theorem for logical categories

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1975 Springer-Verlag

About this paper

Cite this paper

Volger, H. (1975). Logical categories, semantical categories and topoi. In: Lawvere, F.W., Maurer, C., Wraith, G.C. (eds) Model Theory and Topoi. Lecture Notes in Mathematics, vol 445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0061294

Download citation

  • DOI: https://doi.org/10.1007/BFb0061294

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07164-8

  • Online ISBN: 978-3-540-37495-4

  • eBook Packages: Springer Book Archive