The right adjoints into the categories of relational systems

  • A. Pultr
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 137)


Relational Theory Relational System Natural Transformation Full Subcategory Partial Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. André: Categories of functors and adjoint functors, Am. J. of Math., 88 (1966), 529–543.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    P. Freyd: Algebra valued functors in general and tensor products in particular, Colloquium Mathematicum XIV (1966), 89–106.MathSciNetzbMATHGoogle Scholar
  3. [3]
    P. Gabriel, M. Zisman: Calculus of Fractions and Homotopy Theory, Springer Verlag, New York, 1967.CrossRefzbMATHGoogle Scholar
  4. [4]
    J. Isbell: Structure of categories, Bull. AMS 72 (1966), 619–655.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D. M. Kan: Adjoint functors, Trans. AMS 87 (1958), 295–329.MathSciNetzbMATHGoogle Scholar
  6. [6]
    F. E. J. Linton: Some aspects of equational categories, Proc. of the Conference of Categorical Algebra (La Jolla 1965), Springer Verlag, New York 1966.CrossRefzbMATHGoogle Scholar
  7. [7]
    B. Mitchell: Theory of Categories, Academic Press, New York and London 1965.zbMATHGoogle Scholar
  8. [8]
    F. Ulmer: Properties of dense and relative adjoint functors, J. Algebra 8 (1968), 77–95.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • A. Pultr

There are no affiliations available

Personalised recommendations