Small solutions of a high frequency linear oscillator

  • H. E. Gollwitzer
Part I
Part of the Lecture Notes in Mathematics book series (LNM, volume 183)


Limit Point Integral Condition Linear Differential Equation Negative Variation Small Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.zbMATHGoogle Scholar
  2. 2.
    N. Dunford and J. Schwartz, Linear Operators, II Interscience, New York, 1963.zbMATHGoogle Scholar
  3. 3.
    N. Everitt, On the limit-point classification of second-order differential operators, J. London Math. Soc. 4 (1966), 531–534.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    H.E. Gollwitzer, Asymptotic phenomena associated with a linear second order differential operator (to appear).Google Scholar
  5. 5.
    P. Hartman and A. Wintner, Criteria of non-degeneracy for the wave equation, Amer. J. Math. 70 (1948), 295–308.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    P. Hartman, The existence of large or small solutions of linear differential equations, Duke Math. J. 28 (1961), 421–429.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J.W. Macki and J.S. Muldowney, The asymptotic behavior of solutions to linear systems of ordinary differential equations (to appear).Google Scholar
  8. 8.
    Z. Opial, Nouvelles remarques sur l'equation differentielle u″ + a(t)u=0, Ann. Polon. Math. 6 (1959), 75–81.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Z. Opial, Sur les solutions de classe (L2) de l'equation differentielle u″ + q(t)u=0, Ann.Polon. Math. 7 (1960), 293–303.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • H. E. Gollwitzer
    • 1
  1. 1.Drexel UniversityUSA

Personalised recommendations