Skip to main content

Hyperstability, oscillations and optimal stabilization

  • Conference paper
  • First Online:
Seminar on Differential Equations and Dynamical Systems, II

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 144))

  • 410 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lur'e, A. I., On Some Nonlinear Problems in the Theory of Automatic Control, H. M. Stationery Office, London, 1951, (Russian, English transl.).

    MATH  Google Scholar 

  2. Letov, A. M., Stability of Nonlinear Controls, Princeton Univ. Press, Princeton, New Jersey, 1961: 2nd ed., 1963, (Russian, English transl.).

    MATH  Google Scholar 

  3. Lefschetz, S., Stability of Nonlinear Control Systems, Academic Press, 1965.

    Google Scholar 

  4. Aizerman, M. A. and Gantmacher, F. R., Absolute Stability of Control Systems, Holden-Day, San Francisco, 1963.

    Google Scholar 

  5. Halanay, A., Differential Equations, Vol. 23, Academic Press, New York, 1966.

    Google Scholar 

  6. Popov, V. M., Non criterii de stabilitate pentru sistemele automate neliniare, Studii si cercetari de energetica anul X, nr. 1, 1960.

    Google Scholar 

  7. Popov, V. M., Hiperstabilitatea sistemelor automate, Editura Academiei Republicii Socialist Romania, 1966

    Google Scholar 

  8. Yakubovich, V. A.: The Matrix-Inequality Method in the Theory of the Stability of Nonlinear Control Systems, I. The Absolute Stability of Forced Vibrations, (Avtomatika i Telemekhanika, Vol. 25, No. 7 pp. 1017–1029, July, 1964, Russian, English transl.)

    MathSciNet  Google Scholar 

  9. Barbalat, I and Halanay A., Un Problème de Vibrations Nonlinéaires, Colloquium Mathematicum XVIII, 1967-107–110.

    Google Scholar 

Download references

Authors

Editor information

J. A. Yorke

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag

About this paper

Cite this paper

Halanay, A. (1970). Hyperstability, oscillations and optimal stabilization. In: Yorke, J.A. (eds) Seminar on Differential Equations and Dynamical Systems, II. Lecture Notes in Mathematics, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0059925

Download citation

  • DOI: https://doi.org/10.1007/BFb0059925

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-04933-3

  • Online ISBN: 978-3-540-36306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics