Skip to main content

Optimal control and linear functional differential equations

  • Conference paper
  • First Online:
Seminar on Differential Equations and Dynamical Systems, II

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 144))

  • 389 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. T. Banks, Representations for solutions of linear functional differential equations, J. Differential Equations 5(1969), 399–409.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. T. Banks, Variational problems involving functional differential equations, SIAM J. Control 7(1969), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. T. Banks, A maximum principle for optimal control problems with functional differential systems, Bull. Amer. Math. Soc. 75(1969), 158–161.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Bellman and K. L. Cooke, "Differential Difference Equations", Academic Press, New York, 1963.

    MATH  Google Scholar 

  5. C. Castaing, Sur les multi-applications measurables, Rev. Francaise Informat. Recherche Operationelle 1(1967), 91–126.

    MathSciNet  MATH  Google Scholar 

  6. D. H. Chyung and E. B. Lee, Optimal systems with time delays, Proc. 3rd IFAC Conf. London, 1966.

    Google Scholar 

  7. A. Halanay, "Differential Equations", Academic Press, New York, 1966.

    MATH  Google Scholar 

  8. A. Halanay, frLe "principe du maximum" pour les systemes optimaux lineaires a retardement, C. R. Acad. Sci. Paris 254(1962), 2277–2279.

    MathSciNet  MATH  Google Scholar 

  9. H. Halkin, A generalization of LaSalle's "Bang-Bang" principle, SIAM J. Control 2(1964), 199–202.

    MathSciNet  MATH  Google Scholar 

  10. C. J. Himmelberg, M. Q. Jacobs, and F. S. Van Vleck, Measurable multifunctions, selectors, and Filippov's implicit functions lemma, J. Math. Anal. Appl. 25(1969), 276–284.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Q. Jacobs, Measurable multivalued mappings and Lusin's theorem, Trans. Amer. Math. Soc. 134(1968), 471–481.

    MathSciNet  MATH  Google Scholar 

  12. K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13(1965), 397–403.

    MathSciNet  MATH  Google Scholar 

  13. E. B. Lee, Variational problems for systems having delay in the control action, IEEE Trans. AC-13(1968), 697–699.

    MathSciNet  Google Scholar 

  14. E. B. Lee, Geometric theory of linear controlled systems, to appear.

    Google Scholar 

  15. N. Levinson Minimax, Liapunov and "Bang-Bang", J. Differential Equations 2(1966), 218–241.

    Article  MathSciNet  MATH  Google Scholar 

  16. L. W. Neustadt, The existence of optimal controls in the absence of convexity conditions, J. Math. Anal. Appl. 7(1963), 110–117.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Olech, Extremal solutions to a control system, J. Differential Equations 2(1966), 74–101.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. N. Oguztöreli, "Time-Lag Control Systems", Academic Press, New York, 1966.

    MATH  Google Scholar 

  19. E. Pinney, "Ordinary Difference-Differential Equations", Univ. Calif. Press, 1958.

    Google Scholar 

  20. V. Volterra, "Theory of Functionals", Blackie, London, 1930.

    MATH  Google Scholar 

  21. A. M. Zverkin, G. A. Kemenskii, S. B. Norkin, and L. E. El'sgol'ts, Differential equations with a perturbed argument I and II, Russian Math. Surveys 17(1962), 61–146 and Trudy Sem. Teor. Differencial. Uravnenii s Otklon. Argumentom 2(1963), 3–49.

    Article  Google Scholar 

Download references

Authors

Editor information

J. A. Yorke

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag

About this paper

Cite this paper

Banks, H.T., Jacobs, M.Q. (1970). Optimal control and linear functional differential equations. In: Yorke, J.A. (eds) Seminar on Differential Equations and Dynamical Systems, II. Lecture Notes in Mathematics, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0059914

Download citation

  • DOI: https://doi.org/10.1007/BFb0059914

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-04933-3

  • Online ISBN: 978-3-540-36306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics