Advertisement

Hausdorff dimension, lacunary series, and some problems on exceptional sets

  • Robert Kaufman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 266)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. G. Eggleston, Sets of fractional dimensions in number theory, Proc. London Math. Soc. 54(2) (1951), 42–93.MathSciNetzbMATHGoogle Scholar
  2. [2]
    H. Helson and J. P. Kahane, A fourier method in Diophantine problems, J. D'Analyse Math. 15 (1965), 245–262.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Kaufman, A random method for lacunary series, J. D'Analyse Math. 22 (1969), 171–175.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Kaufman, Lacunary series and probability, Pacific J. Math. 36 (1971), 195–200.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Takahashi, Tohôku Math. J. 22 (1970), 502–510.CrossRefGoogle Scholar
  6. [6]
    A. Zygmund, Trigonometric Series, Cambridge 1959 and 1968.Google Scholar

Supplementary References

  1. [1]
    A. S. Besicovitch, Sets of fractional dimensions (IV): On rational approximation to real numbers, J. London Math. Soc. 9 1934, 126–131.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    P. Erdos and S. J. Taylor, On the set of points of convergence of a lacunary trigonometric series..., Proc. London Math. Soc. 7 (3) (1957), 598–615.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P. Erdos and S. J. Taylor, The Hausdorff measure of the intersection of positive Lebesgue measure, Mathematika 10 1963, 1–9.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Kaufman, Probability, Hausdorff dimension, and fractional distribution, Mathematika 17 1970, 57–62.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. Kaufman, A remark on Sidon sets; Hausdorff measure and Sidon sets. (To appear.)Google Scholar
  6. [6]
    V. Jarník, Über einen Satz von A. Khintchine II, Acta Arithmetica 2 (1937), 1–22.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Robert Kaufman
    • 1
  1. 1.University of Illinois at Urbana-Champaign and University of WashingtonUSA

Personalised recommendations