Skip to main content

Hybridization schemes for co-ordination and organometallic compounds

  • Conference paper
  • First Online:
Bioinorganic Chemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 72))

Abstract

The important hybridization schemes for co-ordination and organometallic compounds have been derived using a methodology based on a spherical harmonic expansion of the hybridized orbitals. For spherical co-ordination compounds MLn it is possible to define a set of n hybrids which have their maxima in the metal-ligand directions and 9-n d orbitals or hybrids which have nodes along the metal-ligand bonds. The latter are important for π-bonding to the ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heilter W, London F (1927) Z. Physik. 44: 455

    Article  Google Scholar 

  2. Pauling L (1931) J. Amer. Chem. Soc. 53: 1367

    Article  CAS  Google Scholar 

  3. Pauling L (1960) Nature of the chemical bond, 3rd edn, Cornell University Press, Ithaca, New York

    Google Scholar 

  4. Ballhauson CJ, Gray HB (1964) Molecular orbital theory, Benjamin, New York

    Google Scholar 

  5. Figgis BN (1966) Introduction to ligand fields, Wiley Interscience, New York

    Google Scholar 

  6. McWheeney R (1986) Nature 323: 666

    Article  Google Scholar 

  7. Cooper DL, Gerratt J, Raimondi M (1986) Nature 323: 699

    Article  CAS  Google Scholar 

  8. Pauling L (1987) Nature 325: 396

    Article  Google Scholar 

  9. Walsh AD (1953) J. Chem. Soc. 2260

    Google Scholar 

  10. Gimarc BM (1974) Ace. Chem. Res. 7: 384

    Article  CAS  Google Scholar 

  11. Buenker RJ, Peyerimhoff SD (1974) Chem. Rev. 74: 127

    Article  CAS  Google Scholar 

  12. Elian M, Hoffmann R (1975) Inorg. Chem. 14: 1058

    Article  CAS  Google Scholar 

  13. Elian M, Chen MM-L, Mingos DMP, Hoffmann R (1976) Inorg. Chem. 15: 1148

    Article  CAS  Google Scholar 

  14. Mingos DMP (1983) Adv. Organomet. Chem. 15: 1

    Article  Google Scholar 

  15. Herman ZS (1983) Int. J. Quantum Chem. 23: 921

    Article  CAS  Google Scholar 

  16. Kimball GE (1951) Ann. Rev. Phys. Chem. 2:177

    Article  Google Scholar 

  17. Hultgren R (1932) Phys. Rev. 40: 891

    Article  CAS  Google Scholar 

  18. Pauling L (1975) Proc. Nat. Acad. Sci. USA. 72: 3799,4200;(1976)73: 274,1403,4290;(1978)75:12, 569; (1984) 81:1918

    Article  CAS  Google Scholar 

  19. Pauling L (1978) Acta. Cryst. B34: 746

    CAS  Google Scholar 

  20. Pauling L (1978) Canadian Mineralogist 16: 447

    CAS  Google Scholar 

  21. Pauling L, Herman ZS (1984) J. Chem. Edu. 61: 582

    Article  CAS  Google Scholar 

  22. Herman ZS, Pauling L (1984) Croat. Chemica Acta. 57: 765

    CAS  Google Scholar 

  23. Kimball GE (1940) J. Chem. Phys. 8: 188

    Article  CAS  Google Scholar 

  24. Murrell JN (1960) J. Chem. Phys. 32: 767

    Article  CAS  Google Scholar 

  25. Yang C (1988) J. Mol. Struct. (Theochem.) 169: 1

    Article  Google Scholar 

  26. Pauling L, Herman ZS, Kamb BJ (1982) Proc. Nat. Acad. Sci. USA. 79: 1361

    Article  CAS  Google Scholar 

  27. Racah G (1943) J. Chem. Phys. 11: 214

    Article  CAS  Google Scholar 

  28. Kutzelnigg W (1984) Angew. Chem. Int. Ed. Engl. 23: 272

    Article  Google Scholar 

  29. Kepert DL (1982) Inorganic Stereochemistry, Springer, Berlin Heidelberg, New York

    Google Scholar 

  30. Bent HA (1961) Chem. Rev. 61: 275

    Article  CAS  Google Scholar 

  31. Steiner E (1976) The determination and interpretation of molecular wave functions, Cambridge University Press, London, p 40

    Google Scholar 

  32. Abrahams SC, Ginsberg AP, Knox K (1964) Inorg. Chem. 3: 558

    Article  CAS  Google Scholar 

  33. Burdett JK, Hoffmann R, Fay RC (1978) Inorg. Chem. 17: 2553

    Article  CAS  Google Scholar 

  34. Rossi AR, Hoffmann R (1975) Inorg. Chem. 14: 365

    Article  CAS  Google Scholar 

  35. Hoffmann R, Beier, BF, Muetterties, EL, Rossi AR (1977) Inorg. Chem. 16: 511

    Article  CAS  Google Scholar 

  36. Rosch N, Hoffmann R (1974) Inorg. Chem. 13: 2656

    Article  Google Scholar 

  37. Stone FAG (1975) J. Organomet. Chem. 100: 257

    Article  CAS  Google Scholar 

  38. Russel DR, Tucker PA: J. Organomet. Chem. 100:257

    Google Scholar 

  39. Swalen JD, Ibers J (1962) J. Chem. Phys. 37: 17

    Article  CAS  Google Scholar 

  40. Frenz BA, Ibers JA (1971) In: Muetterties EL (ed) Transition metal hydrides, Marcel Dekker, New York, p 133

    Google Scholar 

  41. Puddephatt RJ (1987) In: Wilkinson G (ed) Comprehensive coordination chemistry, Pergamon, Oxford, vol 5 p 905

    Google Scholar 

  42. Kepert DL (1987) In: Wilkinson G (ed) Comprehensive coordination chemistry, Pergamon, Oxford, vol 1 p 31

    Google Scholar 

  43. Cotton FA, Wilkinson G (1972) Advanced inorganic chemistry, 3rd edn, John Wiley, New York, p 1024

    Google Scholar 

  44. Flomer WA, Kolis JW (1988) J. Amer. Chem. Soc. 110: 3682

    Article  CAS  Google Scholar 

  45. Lewis DF, Lippard SJ (1972) Inorg. Chem. 11: 621

    Article  CAS  Google Scholar 

  46. Kojic-Prodic B, Scavnicars, Matkovic B (1971) Acta. Cryst. B27: 638

    Google Scholar 

  47. Holmes RR (1985) Prog. Inorg. Chem. 32: 119

    Google Scholar 

  48. Mingos DMP, Hawes JC (1985) Structure and Bonding 63: 1

    CAS  Google Scholar 

  49. Collison D, Garner CD, Mabbs FE, Salthouse JA, King TJ: J. Chem. Soc. Dalton Trans. 1981: 1812

    Google Scholar 

  50. Albano VG, Bellon PL, Sansoni M: J. Chem. Soc. A 1971: 2420

    Google Scholar 

  51. Collison D, Garner CD, Mabbs, FE: J. Chem. Soc. Dalton Trans. 1981: 1820

    Google Scholar 

  52. Doedens RJ, Ibers JA (1967) Inorg. Chem. 6: 204

    Article  CAS  Google Scholar 

  53. Albano VG, Ricci, GMB, Bellon PL (1969) Inorg. Chem. 8: 2109

    Article  CAS  Google Scholar 

  54. Laplaca SL, Hamilton WC, Ibers JA, Davison A (1969) Inorg. Chem. 8: 1928

    Article  CAS  Google Scholar 

  55. McNeil EA, Scholer FR (1977) J. Amer. Chem. Soc. 99: 6243

    Article  Google Scholar 

  56. Jean Y, Lledos A, Burdett JK, Hoffmann R (1988) J. Amer. Chem. Soc. 110: 4506 and references therein

    Article  CAS  Google Scholar 

  57. Carrondo MAA, De CT, Shahir R, Skapski AC: J. Chem. Soc. Dalton Trans. 1978: 844

    Google Scholar 

  58. Orgel LE (1960) An introduction to transition metal chemistry: Ligand field theory, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Michael, D., Mingos, P., Zhenyang, L. (1990). Hybridization schemes for co-ordination and organometallic compounds. In: Bioinorganic Chemistry. Structure and Bonding, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0058196

Download citation

  • DOI: https://doi.org/10.1007/BFb0058196

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51574-6

  • Online ISBN: 978-3-540-46668-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics