Advertisement

BSP, LogP, and oblivious programs

  • Jörn Eisenbiegler
  • Welf Löwe
  • Wolf Zimmermann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1470)

Abstract

We compare the BSP and the LogP model from a practical point of view. Using compilation instead of interpretation improves the (best known) simulations of BSP programs on LogP machines by a factor of O(log P) for oblivious programs. We show that the runtime decreases for classes of oblivious BSP programs if they are compiled into LogP programs instead of executed directly using a BSP runtime library. Measurements support the statements above.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman. LogGP: Incorporating long messages into the LogP model. In 7th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 95–105, 1995.Google Scholar
  2. 2.
    Gianfranco Bilardi, Kieran T. Herley, Andrea Pietracaprina, Geppino Pucci, and Paul Spirakis. Bsp vs logp. In SPAA ’96: 8th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 25–32. ACM, acm press, June 1996.Google Scholar
  3. 3.
    R. Cole and J. Hopcroft. On edge coloring bipartite graphs. SIAM Journal on Computing, 11(3):540–546, 1982.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. von Eicken. LogP: Towards a realistic model of parallel computation. In 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP 93), pages 235–261, 1993.Google Scholar
  5. 5.
    Jörn Eisenbiegler, Welf Löwe, and Andreas Wehrenpfennig. On the optimization by redundancy using an extended LogP model. In International Conference on Advances in Parallel and Distributed Computing (APDC’97), pages 149–155. IEEE Computer Society Press, March 1997.Google Scholar
  6. 6.
    Jonathan M. D. Hill, Paul I. Crumpton, and David A. Burgess. Theory, practice, and a tool for BSP performance prediction. In Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors, Euro-Par’96 Parallel Processing, number 1123 in Lecture Notes in Computer Science, pages 697–705. Springer, August 1996.Google Scholar
  7. 7.
    R.M. Karp, A. Sahay, E.E. Santos, and K.E. Schauser. Optimal broadcast and summation in the logp model. ACM-Symposium on Parallel Algorithms and Architectures, 1993.Google Scholar
  8. 8.
    W. F. McColl. Scalable computing. In Jan van Leeuwen, editor, Computer Science Today, number 1000 in Lecture Notes in Computer Science, pages 46–61. Springer, 1995.Google Scholar
  9. 9.
    Leslie G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8), August 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jörn Eisenbiegler
    • 1
  • Welf Löwe
    • 1
  • Wolf Zimmermann
    • 1
  1. 1.Institut für Programmstrukturen und DatenorganisationUniversität KarlsruheKarlsruheGermany

Personalised recommendations