Fast parallel Hermite normal form computation of matrices over \(\mathbb{F}[x]\)

  • Clemens Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1470)


We present an algorithm for computing the Hermite normal form of a polynomial matrix and an unimodular transformation matrix on a distributed computer network. We provide an algorithm for reducing the off-diagonal entries which is a combination of the standard algorithm and the reduce off-diagonal algorithm given by Chou and Collins. This algorithm is parametrised by an integer variable.

We provide a technique for producing small multiplier matrices if the input matrix is not full-rank, and give an upper bound for the degrees of the entries in the multiplier matrix.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. Blankinship. A new version of the Euclidian algorithm. Amer. Math. Monthly, 70(9):742–745, 1963.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    W. A. Blankinship. Matrix triangulation with integer arithmetic. Comm. ACM, 9(7):513, 1966.CrossRefGoogle Scholar
  3. 3.
    G. H. Bradley. Algorithms and bound for the greatest common divisor of n integers and multipliers. Comm. ACM, 13:447, 1970.MathSciNetCrossRefGoogle Scholar
  4. 4.
    G. H. Bradley. Algorithms for Hermite and Smith normal matrices and linear Diophantine equations. Math. Comp., 25(116):897–907, 1971.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    T. W. J. Chou and G. E. Collins. Algorithms for the solution of systems of linear Diophantine equations. SIAM J. Comput., 11(4):687–708, 1982.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    G. D. Forney. Convolutional codes I: Algebraic structure. IEEE Trans. Inform. Theory, IT-16(6):720–738, 1970.MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Havas and B. S. Majewski. Extended gcd calculation. Congr. Numer., 111:104–114, 1995.MATHMathSciNetGoogle Scholar
  8. 8.
    G. Havas, B. S. Majewski, and K. R. Matthews. Extended gcd algorithms. Technical Report TR0302, The University of Queensland, Brisbane, 1995.Google Scholar
  9. 9.
    G. Havas and C. Wagner. Matrix reduction algorithms for euclidean rings. In Proc. of the 3rd Asian Symposium Computer Mathematics, to appear.Google Scholar
  10. 10.
    E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Parallel algorithms for matrix normal forms. Linear Algebra Appl., 136:189–208, 1990.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    B. S. Majewski and G. Havas. A solution to the extended gcd problem. In ISSAC’95 (Proc. 1995 Internat. Sympos. Symbolic Algebraic Comput.), pages 248–253. ACM Press, 1995.Google Scholar
  13. 13.
    C. C. Sims. Computation with Finitely Presented Groups. Cambridge University Press, 1994.Google Scholar
  14. 14.
    C. Wagner. Normalformberechnung von Matrizen über euklidischen Ringen. PhD thesis, Institut für Experimentelle Mathematik, Universität/GH Essen, 1997. Published by Shaker-Verlag, 52013 Aachen/Germany, 1998.Google Scholar
  15. 15.
    C. Wagner. Hermite normal form computation over Euclidean rings. Interner Bericht 71, Rechenzentrum der Universität Karlsruhe, 1998. submitted for publication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Clemens Wagner
    • 1
  1. 1.Rechenzentrum der Universität KarlsruheGermany

Personalised recommendations