Fault tolerant QR-decomposition algorithm and its parallel implementation

  • Oleg Maslennikow
  • Juri Kaniewski
  • Roman Wyrzykowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1470)


A fault tolerant algorithm based on Givens rotations and a modified weighted checksum method is proposed for the QR-decomposition of matrices. The algorithm enables us to correct a single error in each row or column of an input M × N matrix A occurred at any among N steps of the algorithm. This effect is obtained at the cost of 2.5N 2+O(N) multiply-add operations (M=N). A parallel version of the proposed algorithm is designed, dedicated for a fixed-size linear processor array with fully local communications and low I/O requirements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.H. Golub, C.F. Van Loan, Matrix computations, John Hopkins Univ. Press, Baltimore, Maryland, 1996.Google Scholar
  2. 2.
    å. Björck, Numerical methods for least squares problems, SIAM, Philadelphia, 1996.Google Scholar
  3. 3.
    S.Y. Kung, VLSI array processors, Prentice-Hall, Englewood Cliffs, N.J., 1988.Google Scholar
  4. 4.
    S.E. Butner, Triple time redundancy, fault-masking in byte-sliced systems. Tech.Rep. CSL TR-211, Dept. of Elec.Eng., Stanford Univ., CA, 1981.Google Scholar
  5. 5.
    K.H. Huang, J.A. Abraham, Algorithm-based fault tolerance for matrix operations. IEEE Trans. Comput., C-35 (1984) 518–528.Google Scholar
  6. 6.
    V.S. Nair, J.A. Abraham, Real-number codes for fault-tolerant matrix operations on processor arrays. IEEE Trans. Comp., C-39 (1990) 426–435.CrossRefGoogle Scholar
  7. 7.
    J.-Y. Han, D.C. Krishna, Linear arithmetic code and its application in fault tolerant systolic arrays, in Proc. IEEE Southeastcon, 1989, 1015–1020.Google Scholar
  8. 8.
    J.S. Kaniewski, O.V. Maslennikow, R. Wyrzykowski, Algorithm-based fault tolerant matrix triangularization on VLSI processor arrays, in Proc. Int. Workshop ”Parallel Numerics’95”, Sorrento, Italy, 1995, 281–295.Google Scholar
  9. 9.
    J.S. Kaniewski, O.V. Maslennikow, R. Wyrzykowski, Algorithm-based fault tolerant solution of linear systems on processor arrays, in Proc. 7-th Int. Workshop ”PARCELLA ’96”, Berlin, Germany, 1996, 165–173.Google Scholar
  10. 10.
    D.E. Schimmel, F.T. Luk, A practical real-time SVD machine with multi-level fault tolerance. Proc. SPIE, 698 (1986) 142–148.Google Scholar
  11. 11.
    F.T. Luk, H. Park, An analysis of algorithm-based fault tolerance techniques. Proc. SPIE, 696 (1986) 222–227.Google Scholar
  12. 12.
    R. Wyrzykowski, J. Kanevski, O. Maslennikov, Mapping recursive algorithms into processor arrays, in Proc. Int. Workshop Parallel Numerics’94, M. Vajtersic and P. Zinterhof eds., Bratislava, 1994, 169–191.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Oleg Maslennikow
    • 1
  • Juri Kaniewski
    • 1
  • Roman Wyrzykowski
    • 2
  1. 1.Dept. of ElectronicsTechnical University of KoszalinKoszalinPoland
  2. 2.Dept. of Math. & Comp. SciCzestochowa Technical UniversityCzestochowaPoland

Personalised recommendations