Advertisement

Clustering techniques for minimizing object access time

  • Vlad S. I. Wietrzyk
  • Mehmet A. Orgun
Regular Papers Object Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1475)

Abstract

We propose three designs for clustering objects: a new graph partitioning algorithm, Boruvka’s algorithm, and a randomized algorithm for object graph clustering. Several points are innovative in our approach to clustering: (1) the randomized algorithm represents a new approach to the problem of clustering and is based on probabilistic combinatorics. (2) All of our algorithms can be used to cluster objects with multiple connectivity. (3) Currently applied partition-based clustering algorithms are based on Kruskal’s algorithm which always runs significantly slower than Prim’s and also uses considerably more storage. However in our implementation of clustering algorithms we achieved additional reduction in processing time of object graphs.

Keywords

Object Database System Performance Clustering Buffering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. E. Chang, R. H. Katz, “Exploiting Inheritance and Structure Semantics for Effective Clustering and Buffering in an Object-oriented database system”, in Proceedings of the ACM SIGMOD Conference, 1989.Google Scholar
  2. 2.
    Manolis M. Tsangaris and Jeffrey F. Naughton. Amnesia: a stochastic access model for object stores. Unpublished Manuscript, University of Wisconsin-Madison, August 1990.Google Scholar
  3. 3.
    D. DeWitt, S. Ghandeharizadeh, S. Schneider, D. Bricker, H. Hsiao, H. Rasmussen, “The Gamma Database Machine Project”, IEEE Transactions on Knowledge and Data Engineering, 2(1), March, 1990.Google Scholar
  4. 4.
    M. M. Tsangaris, J. F. Naughton, “A Stochastic Approach for Clustering in Object Bases”, ACM SIGMOD Conference, Denver, Colorado, 1991, pp. 12–21.Google Scholar
  5. 5.
    J. R. Cheng, A. R. Hurson, “Effective Clustering of Complex Objects in Object-Oriented Databases”, ACM SIGMOD Conference, Denver, Colorado, 1991, pp. 22–31.Google Scholar
  6. 6.
    V. Benzaken, “An Evaluation Model for Clustering Strategies in the O2 Object-Oriented Database System”, Int. Conf. on Database Theory (ICDT), pp. 126–140. Springer-Verlag, 1990.Google Scholar
  7. 7.
    J. Banerjee, W. Kim, and J. F. Garza, “Clustering a DAG for CAD Databases”, IEEE Transactions on Software Engineering 14(11) p. 1684, November 1988.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    V. Benzaken, C. Delobel, “Dynamic Clustering Strategies in the O2 Object-Oriented Database System”, Technical Report 34-89, Altair, 1989.Google Scholar
  9. 9.
    E. E. Chang, R. H. Katz, “Exploiting Inheritance and Structure Semantics for Effective Clustering and Buffering in an Object-oriented database system”, in Proceedings of the ACM SIGMOD Conference, 1989.Google Scholar
  10. 10.
    P. Drew, R. King, S. Hudson, “The Performance and Utility of the Cactis Implementation Algorithms”, Sixteenth VLDB Conference, 1990.Google Scholar
  11. 11.
    K. Kemper, C. Gerlhof, “Clustering in Object Bases”, University of Karlsruhe, Technical Report 6/92, June, 1992.Google Scholar
  12. 12.
    G. Moerkotte, C. Kilger, “Clustering in Object Bases”, University of Karlsruhe, Technical Report, June, 1992.Google Scholar
  13. 13.
    J. Stamos, “Static Grouping of Small Objects to Enhance Performance of a Paged Virtual Memory”, ACM Trans. Comp. Syst., 2(2): 155–180, May 1984.CrossRefGoogle Scholar
  14. 14.
    M. Carey, D. DeWitt, J. Richardson, and E. Shekita, “Object and File Management in the EXODUS Extensible Database System”, Conf. on VLDB, p. 91–100, Japan, Aug 86.Google Scholar
  15. 15.
    Hudson, R. King, “Cactis: A self-adaptive, concurrent implementation of an Object-Oriented Database Management System”, ACM Trans. On Database Systema, 14(3): 291–321, Sep 1989.CrossRefGoogle Scholar
  16. 16.
    VERSANT System Manual, VERSANT Release 5.0, February 1997Google Scholar
  17. 17.
    Wietrzyk, M. A. Orgun, “VERSANT Architecture: Supporting High-Performance Object Databases”, International Database Engineering & Applications Symposium, IDEAS98, Cardiff, U.K., July 1998, (accepted to appear).Google Scholar
  18. 18.
    Melnikow, R. Tyshkevich, V. Yemelichev, V. Sarvanov, “Lectures on Graph Theory”, Moscow, “Science”, 1990.Google Scholar
  19. 19.
    Tyshkevich, N. Korneenko and V. Zemljachenko, “Graph Isomorphism Problems”, J. of Math, Moscow, “Science”, 1990.Google Scholar
  20. 20.
    Kemper, G. Moerkotte, “Physical Object Management” in Modern Database Systems, ACM Press, New York, 1995, Won Kim, Editor.Google Scholar
  21. 21.
    R. Karger, “Approximating, verifying, and constructing minimum spanning forests”, Manuscript, 1992.Google Scholar
  22. 22.
    R. Karger, “Random sampling in matroids, with applications to graph connectivity and minimum spanning trees”, In Proceedings of the 34 th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., p. 84–93, 1993.Google Scholar
  23. 23.
    N. Klein, R. E. Tarjan, “A randomized linear-time algorithm for finding minimum spanning trees”, In Proceedings of the 26 th Annual ACM Symposium on Theory of Computing. (Montreal, Que., Canada, May 23–25). ACM, New York, p. 9–15, 1994.Google Scholar
  24. 24.
    N. Alon, J. Spencer, “The Probabilistic Method”, Wiley, New York, 1992.Google Scholar
  25. 25.
    Komlos, “Linear verification for spanning trees”, Combinatorica 5 p. 57–65, 1985.MATHMathSciNetGoogle Scholar
  26. 26.
    Chernoff, “A measure of the asymptotic efficiency for tests of a hypothesis based on the sum of observations”, Ann. Math. Stat. 23, p. 493–509, 1952.MATHMathSciNetGoogle Scholar
  27. 27.
    W. Kernighan, S. Lin, “An efficient Heuristic Procedure for Partitioning Graphs”, Bell System Technical Journal, 49(2), pages 291–307, February 1970.MATHGoogle Scholar
  28. 28.
    Erdos and A. Renyi, “On the Evolution of Random Graphs”, Magyar Tud. Akad. Mat. Kut. Int. Kozl 5, 1960.Google Scholar
  29. 29.
    L. Anderson, A.J. Berre, M. Mallison et al, “The Hypermodel Benchmark” in Bancilhon, Thanos, Tsichritzis (Eds.): Advances in Database Technology — EDBT’90, LNCS 416, 1990.Google Scholar
  30. 30.
    Bing, R. Cheng, A. R. Hurson, “Effective Clustering of Complex Objects in OO Databases”, in Proc. ACM SIGMOD Conf., Denver, CO. May 1991.Google Scholar
  31. 31.
    Moerkotte, C. Gerlhof, A. Kemper “On the Cost of Monitoring and Reorganization of Object Bases for Clustering”, SIGMOD Record, September 1996.Google Scholar
  32. 32.
    M. Carey, D. DeWitt, “ Storage Management for Objects in EXODUS”, in W. Kim and F. H. Lochovsky, eds., Object-Oriented Concepts, Databases and Applications, Addison-Wesley, 1989.Google Scholar
  33. 33.
    T. Chou, D. Dewitt, R. Katz, A. Klug, “Design and Implementation of the Wisconsin Storage System”, in Software-Practice and Experience, October 1985.Google Scholar
  34. 34.
    T. Keller, G. Graefe, D. Maier, “Efficient Assembly of Complex Objects”, ACM SIGMOD Conference, Denver, Colorado, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Vlad S. I. Wietrzyk
    • 1
  • Mehmet A. Orgun
    • 1
  1. 1.Department of ComputingMacquarie University ∼ SydneySydneyAustralia

Personalised recommendations