Advertisement

System architecture of a distributed expert system for the management of a national data network

  • Ioannis Vlahavas
  • Nick Bassiliades
  • Ilias Sakellariou
  • Martin Molina
  • Sascha Ossowski
  • Ivan Futo
  • Zoltan Pasztor
  • Janos Szeredi
  • Igor Velbitskiy
  • Sergey Yershov
  • Sergey Golub
  • Igor Netesin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1480)

Abstract

The management of large data networks, like a national WAN, is without any doubt a complex task. Taking into account the constantly increasing size and complexity of today's TCP/IP based networks, it becomes obvious that there is a demanding need for better than simple monitoring management tools. Expert system technology seems to be a very promising approach for the development of such tools. This paper describes the system architecture of ExperNet, a distributed expert system for the management of the National Computer Network of Ukraine, and the implementation of the tools used for its development. ExperNet is a multiagent system built in DEVICE, an active OODB enhanced with high level rules, that uses CS-Prolog II to implement the communication facilities required. The system employs HNMS+ and Big-Brother, two modified versions of existing network management tools, in order to obtain a complete view of the monitored network.

keywords

Distributed expert systems agents network management distributed prolog 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbuceanu M., Fox S.: COOL: A Language for Describing Coordination in Multi Agent Systems. Proc. ICMAS, 1995Google Scholar
  2. 2.
    Bassiliades N. and Vlahavas I.: ”DEVICE: Compiling Production Rules into Event-Driven Rules Using Complex Events”, Information and Software Technology, Vol. 39(5), pp. 331–342, Elsevier Science, 1997.Google Scholar
  3. 3.
    Bassiliades N. and Vlahavas I: ”Processing Production Rules in DEVICE, an Active Knowledge Base System”. Data & Knowledge Engineering, Vol. 24(2), pp. 117–155, Elsevier Science, 1997.Google Scholar
  4. 4.
    BigBrother. A Web-based Unix Network Monitoring and Notification System. Available at URL: http://www.iti.qc.ca/users/sean/bb/bb.htmlGoogle Scholar
  5. 5.
    Brown, D. and Chandrasekaran, B.: Design Problem-solving: Knowledge Structures and Control Strategies. Morgan Kaufman, 1989Google Scholar
  6. 6.
    Case J., Fedor M., Schoffstall M., Davin J. Simple Network Management Protocol, RFC 1157, SNMP Research, Performance Systems International, MIT Laboratory for Computer Science, 1990.Google Scholar
  7. 7.
    Chandrasekaran, B., Johnson, T., and Smith, J.: Task-Structure Analysis for Knowledge Modelling. Communications of the ACM 35 (9), 1992Google Scholar
  8. 8.
    Clancey W.: Heuristic Classification. Artificial Intelligence 27, 1985Google Scholar
  9. 9.
    Cockburn, D. and Jennings, N.: ARCHON: A Distributed Artificial Intelligence System for Industrial Applications, Foundations of DAL O'Hare and Jennings (eds.), Wiley, 1996Google Scholar
  10. 10.
    Cuena J., Molina M.: KSM: An Environment for Knowledge Oriented Design of Applications Using Structured Knowledge Architectures. Applications and Impacts. Information Processing 94. Vol 2 K. Brunnstein and E. Raubold (eds.). Elsevier, 1994. (see also: http://www.isys.dia.fi.upm.es/ksm).Google Scholar
  11. 11.
    Cuena J., Ossowski S.: Distributed Models for Decision Support. To appear in Introduction to Distributed Artificial Intelligence. Weiss and Sen (eds.) AAAI/MIT Press, 1998Google Scholar
  12. 12.
    George Jude A., Schecht Leslie E. The NAS Hierarhical Network Management System In ”Integrated Network management III”, H.-G. Hegering and Y. Yemini (Editors), Elsevier Science Publishers, Amsterdam, 1993.Google Scholar
  13. 13.
    Matov Alexander. The development of Internet-like networks in Ukraine Networks and Telecommunications, Kiev, no.2, 1997. — pp.4–11.Google Scholar
  14. 14.
    Muller, H.-J.: Negotiation Principles in Foundations of DAI. O'Hare and Jennings (eds.), Wiley, 1996Google Scholar
  15. 15.
    Puerta A.R., Tu S.W. and Musen M.A.: Modelling Task with Mechanisms. International Journal on Intelligent Systems. Vol 8, 1993.Google Scholar
  16. 16.
    Rose M. The Simple Book: An Introduction to Management of TCP/IP-based Internets. Prentice-Hall, Inc., New Jersey, 1991.Google Scholar
  17. 17.
    Wielinga B.J., Schreiber A.T., Breuker J.A.: ”KADS: A Modelling Approach to Knowledge Engineering”. Knowledge Acquisition, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Ioannis Vlahavas
    • 1
  • Nick Bassiliades
    • 1
  • Ilias Sakellariou
    • 1
  • Martin Molina
    • 2
  • Sascha Ossowski
    • 2
  • Ivan Futo
    • 3
  • Zoltan Pasztor
    • 3
  • Janos Szeredi
    • 3
  • Igor Velbitskiy
    • 4
  • Sergey Yershov
    • 4
  • Sergey Golub
    • 4
  • Igor Netesin
    • 4
  1. 1.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Artificial IntelligenceTechnical University of MadridMadridSpain
  3. 3.ML KftML Consulting and Computing LtdBudapestHungary
  4. 4.International Software Technology Research Center TechnosoftKievUkraine

Personalised recommendations