Modal reasoning and rough set theory

  • Churn-Jung Liau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1480)


In this paper, we would like to present some modal logics with semantics based on rough set theory and related notions. In addition to surveying some well-known results about the links between modal logics and rough set theory, we also develop some new applied logics inspired by generalized rough set theory.


Rough set modal logic epistemic logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Aumann. “Agreeing to disagree”. The Annals of Statistics, 4(6):1236–1239, 1976.zbMATHMathSciNetGoogle Scholar
  2. 2.
    W. Buszkowski. “Communication logic is an elementary theory”. Bulletin of Polish Academy of Sciences: Mathematics, 35:637–642, 1987.zbMATHMathSciNetGoogle Scholar
  3. 3.
    B.F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.Google Scholar
  4. 4.
    L. Farinas del Cerro and E. Orlowska. “DAL-A logic for data analysis”. Theoretical Computer Science, 36:251–264, 1985.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    D. Dubois and H. Prade. “An introduction to possibilistic and fuzzy logics”. In P. Smets, A. Mamdani, D. Dubois, and H. Prade, editors, Non-Standard Logics for Automated Reasoning, pages 253–286. Academic Press, 1988.Google Scholar
  6. 6.
    D. Dubois and H. Prade. “Rough fuzzy sets and fuzzy rough sets”. International Journal of General Systems, 17:191–200, 1990.zbMATHGoogle Scholar
  7. 7.
    R.F. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge. MIT Press, 1996.Google Scholar
  8. 8.
    D. M. Gabbay. “Fibring and labelling: Two methods for making modal logic fuzzy”. In Proceedings of IFSA'97, pages 3–12, 1997.Google Scholar
  9. 9.
    J.Y. Halpern and Y. Moses. “Knowledge and common knowledge in a distributed environment”. JACM, 37(3):549–587, 1990.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    J.D. Katzberg and W. Ziarko. “Variable precision extension of rough set”. Fundamenta Informaticae, 27:155–168, 1996.zbMATHMathSciNetGoogle Scholar
  11. 11.
    C.J. Liau. “On the relationship between evidential structures and data tables”. In M. De Glas and Z. Pawlak, editors, Proceedings of the 2nd World Conference on the Fundamentals of Artificial Intelligence, pages 205–216. Angkor, France, 1995.Google Scholar
  12. 12.
    C.J. Liau and I.P. Lin. “Quantitative modal logic and possibilistic reasoning”. In B. Neumann, editor, Proceedings of the 10th ECAI, pages 43–47. John Wiley & Sons. Ltd, 1992.Google Scholar
  13. 13.
    T.Y. Lin and N. Cercone, editors. Rough Sets and Data Mining-Analysis of Imprecise Data. Kluwer Academic Publishers, 1997.Google Scholar
  14. 14.
    T.Y. Lin and Y.Y. Yao. “Neighborhoods systems: measure, probability and belief functions”. In Proceedings of the 4th International Workshop on Rough Sets, Fuzzy Sets and Machine Discovery, pages 202–207, Tokyo, November 1996.Google Scholar
  15. 15.
    Z. Pawlak. “Rough sets”. International Journal of Computer and Information Science, 11:341–356, 1982.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Z. Pawlak. Rough Sets-Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, 1991.Google Scholar
  17. 17.
    L. Polkowski, A. Skowron, and J. Zytkow. “Tolerance based rough sets”. In T.Y. Lin and A.M. Wildberger, editors, Soft Computing, pages 55–58, 1995.Google Scholar
  18. 18.
    G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.Google Scholar
  19. 19.
    W. Sierpenski and C. Krieger. General Topology. University of Toranto Press, 1956.Google Scholar
  20. 20.
    A. Skowron. “Boolean reasoning for decision rules generation”. In J.Komorowski and Z. W. RaŚ, editors, Proceedings of the 7th ISMIS, LNAI 689, pages 295–305. Springer-Verlag, 1993.Google Scholar
  21. 21.
    A. Skowron and J. W. Grzymala-Busse. “From rough set theory to evidence theory”. In R. R. Yager, M, Federizzi, and J. Kacprzyk, editors, Advances in the Dempster-Shafer Theory of Evidence, pages 193–236. John Wiley and Sons, 1994.Google Scholar
  22. 22.
    H. Thiele. “On the definition of modal operators in fuzzy logic”. In Proceedings of the 23rd IEEE International Symposium on Multiple-Valued Logic, pages 62–67, 1993.Google Scholar
  23. 23.
    A. Tzouvaras. “If the liar is intentional then his paradox can be resolved (Abstract)”. In Proceedings of the 10th International Congress of Logic, Methodology and Philosophy of Science, page 182, 1995.Google Scholar
  24. 24.
    W. van der Hoek. Modalities for Reasoning about Knowledge and Quantities. PhD thesis, Free University Amsterdam, 1992.Google Scholar
  25. 25.
    S.K.M. Wong, L.S. Wang, and Y.Y. Yao. “Interval structure: a framework for representing uncertain information”. In Proceedings of the 8th International Conference on Uncertainty in Artificial Intelligence, pages 336–343, 1993.Google Scholar
  26. 26.
    S.K.M. Wong, Y.Y. Yao, and L.S. Wang. “An application of rough sets in knowledge synthesis”. In K. S. Harber, editor, Proceedings of the 7th ISMIS(Poster Session), ORNL/TM-12375, pages 140–150. Center for Engineering Systems Advanced Research, Oak Ridge National Laboratory, 1993.Google Scholar
  27. 27.
    Y.Y. Yao. “Two views of the theory of rough sets in finite universes”. International Journal of Approximate Reasoning, 15:291–317, 1996.zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Y.Y. Yao and T.Y. Lin. “Generalization of rough sets using modal logics”. Intelligent Automation and Soft Computing, 2:103–120, 1996.Google Scholar
  29. 29.
    Y.Y. Yao, S.K.M. Wong, and T.Y. Lin. “A review of rough set models”. In T.Y. Lin and N. Cercone, editors, Rough Sets and Data Mining-Analysis of Imprecise Data, pages 47–75. Kluwer Academic Publishers, 1997.Google Scholar
  30. 30.
    W. Ziarko. “Variable precision rough set model”. Journal of Computer and System Science, 46:39–59, 1993.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Churn-Jung Liau
    • 1
  1. 1.Institute of Information ScienceAcademia SinicaTaipeiTaiwan

Personalised recommendations