Advertisement

Reasoning about generalized intervals

  • P. Balbiani
  • J. -F. Condotta
  • L. Fariñas del Cerro
  • A. Osmani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1480)

Abstract

Extending previous notions of generalized intervals, this paper defines the generalized interval as a tuple of solutions of some consistent interval network. It studies the possible relations between such generalized intervals and introduces the notion of a generalized interval network. It proves the tractability of the problem of the consistency of a generalized network which constraints are preconvex.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, Volume 26, 832–843, 1983.MATHCrossRefGoogle Scholar
  2. [2]
    J. Allen, P. HayesA common sense theory of time. A. Joshi (editor), IJCAI-85, Proceedings of the 9th International Joint Conference on Artificial Intelligence, Volume 1, 528–531, Morgan Kaufmann 1985.Google Scholar
  3. [3]
    P. Balbiani, J.-F. Condotta, L. Fariñas del Cerro.A model for reasoning about bidimensional temporal relations. A. Cohn, L. Schubert (editors), KR'98. To appear.Google Scholar
  4. [4]
    C. Bessière, A. Isli, G. Ligozat.Global consistency in interval algebra networks: tractable subclasses. W. Wahlster (editor), ECAI-96. Proceedings of the 12th European Conference on Artificial Intelligence, 3–7, Wiley, 1996.Google Scholar
  5. [5]
    P. Ladkin. Time representation: a taxonomy of interval relations. AAAI-86. Proceedings of the Fifth National Conference on Artificial Intelligence, Volume 1, 360–366, 1986Google Scholar
  6. [6]
    P. Ladkin.Models of axioms for time intervals. AAAI-87. Proceedings of the Sixth National Conference on Artificial Intelligence, Volume 1, 234–239, Maurgan Kaufmann 1987.Google Scholar
  7. [7]
    G. Ligozat.Weak representations of interval algebras. AAAI-90. Proceedings of the 8th National Conference on Artificial Intelligence, Volume Two, 715–720, AAAI Press and MIT Press, 1990.Google Scholar
  8. [8]
    G. Ligozat.On generalized interval calculi. AAAI-91. Proceedings of the Ninth National Conference on Artificial Intelligence, Volume One, 234–240, AAAI Press and MIT Press, 1991.Google Scholar
  9. [9]
    G. Ligozat.A new proof of tractability for ORD-Horn relations. AAAI-96. Proceedings of the Thirteenth National Conference on Artificial Intelligence, Volume One, 395–401, AAAI Press and MIT Press, 1996.Google Scholar
  10. [10]
    G. Ligozat, H. Bestougeff. On relations between intervals. Information Processing Letters, Volume 32, 177–182, 1989.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. MackworthConsistency in networks of relations. Artificial Intelligence, Volume 8, 99–118, 1977.MATHCrossRefGoogle Scholar
  12. [12]
    R. Morris, W. Shoaff, L. Khatib.Path consistency in a network of non-convex intervals. IJCAI-93. Proceedings of the 13th International Joint Conference on Artificial Intelligence, Volume 1, 655–660, Morgan Kaufmann, 1993.Google Scholar
  13. [13]
    B. Nebel, H.-J. Bürckert.Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra. AAAI-94. Proceedings of the Twelfth National Conference on Artificial Intelligence, Volume One, 356–361, AAAI Press and MIT Press, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • P. Balbiani
    • 1
  • J. -F. Condotta
    • 2
  • L. Fariñas del Cerro
    • 2
  • A. Osmani
    • 1
  1. 1.Laboratoire d'informatique de Paris-NordFrance
  2. 2.Institut de recherche en informatique de ToulouseFrance

Personalised recommendations