Advertisement

Groupe des difféomorphismes et espace de teichmüller d'une surface

d'après C. Earle et J. Eells
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 383)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    L. AHLFORS and L. BERS-Riemann's mapping theorem for variable metrics, Ann. of Math., 72 (1960), 385–404.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. BAER-Isotopie von Kurven auf orientierbaren FlÄchen und ihr Zusam- menhang mit der topologischen Deformation der FlÄchen, J. reine angew. Math., 159 (1928), 101–111.zbMATHGoogle Scholar
  3. [3]
    L. BERS-Quasiconformal mappings and Teichmüller theorem, in Analytic functions, Princeton University Press, Princeton, 1960.Google Scholar
  4. [4]
    L. BERS, F. JOHN and M. SCHECTER-Partial differential equations, Interscience, New York, 1964.Google Scholar
  5. [5]
    J. CERF-Théorèmes de fibration des espaces de plongements, Sém. Cartan, 15e année, 1962/63, exp. nℴ 8.Google Scholar
  6. [6]
    C. EARLE and J. EELLS-A fibre bundle description of Teichmüller theory, J. Differential Geometry, 3 (1969), 19–43.zbMATHMathSciNetGoogle Scholar
  7. [7]
    C. EARLE and A. SCHATZ-Teichmüller theory for surfaces with boundary, J. Differential Geometry, 4 (1970), 169–185.zbMATHMathSciNetGoogle Scholar
  8. [8]
    D. EPSTEIN-Curves on 2-manifolds and isotopies, Acta Math., 115 (1966), 83–107.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. GROTHENDIECK-Techniques de construction en géométrie analytique, Sém. Cartan, 13e année, 1960/61, exp. noS 7–8.Google Scholar
  10. [10]
    M. HAMSTROM-Homotopy groups of the space of homeomorphisms on a 2-manifold, Illinois J. Math., 10 (1966), 563–573.zbMATHMathSciNetGoogle Scholar
  11. [11]
    S. SMALE-Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc., 10 (1959), 621–626.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    O. TEICHMüLLER-Extremale quasikonforme Abbildungen und quadratische Differentiale, Preuss. Akad., 22 (1940)Google Scholar
  13. [13]
    A. WEIL-Modules des surfaces de Riemann, Sém. Bourbaki, 11e année, 1958/59, exp. nℴ 168, Addison-Wesley/Benjamin, New York.Google Scholar
  14. [14]
    R. LUKE and W. MASON-The space of homeomorphisms on a compact 2-manifold is an A.N.R., Trans. of A.M.S., 164 (1972), 275–285.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    J. CERF-Topologie de certains espaces de plongements, Bull. de la S.M.F., 89 (1961), 227–380.zbMATHMathSciNetGoogle Scholar
  16. [16]
    A. GRAMAIN-Le type d'homotopie du groupe des difféomorphismes d'une surface, Ann. Sc. de l'E.N.S., 6 (1973), 53–66.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

There are no affiliations available

Personalised recommendations