Advertisement

Le théorème d'isomorphisms d'ornstein et la classification des systemes dynamiques en théorie ergodique

Conference paper
  • 143 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 383)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    R. AZENCOTT-Difféomorphismes d'Anosov et Schémas de Bernoulli, C. R. Acad. Sci. 270, 1970.Google Scholar
  2. [2]
    N. A. FRIEDMAN, D. S. ORNSTEIN-On isomorphism of weak Bernoulli transfor-mations, Advances in Math. 5, 3 (1970), p. 365–394.zbMATHMathSciNetGoogle Scholar
  3. [3]
    Y. KATZNELSON-Ergodic automorphisms of Tn are Bernoulli shifts, à paraÎtre.Google Scholar
  4. [4]
    D. S. ORNSTEIN-Bernoulli shifts with the same entropy are isomorphic, Advances in Math. 4, 3 (1970), p. 337–352.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. S. ORNSTEIN-Bernoulli shifts with infinite entropy are isomorphic, Advances in Math. 5, 3 (1970), p. 339–348.MathSciNetGoogle Scholar
  6. [6]
    D. S. ORNSTEIN-Factors of Bernoulli shifts are Bernoulli shifts, Advances in Math. 5, 3 (1970), p. 349–364.MathSciNetGoogle Scholar
  7. [7]
    D. S. ORNSTEIN-Imbedding Bernoulli shifts in flows, Midwest Conference, Ergodic Theory and Probability, Lecture Notes in Maths. 160, p. 178–218, Springer-Verlag.Google Scholar
  8. [8]
    D. S. ORNSTEIN-A K-automorphism with no square root and Pinsker's conjecture, à paraÎtre (1971).Google Scholar
  9. [9]
    D. S. ORNSTEIN-An application of Ergodic Theory to Probability Theory, à paraÎtre (1972).Google Scholar
  10. [10]
    D. S. ORNSTEIN, P. C. SHIELDS-An uncountable family of K-automorphisms, à paraÎtre (1972).Google Scholar
  11. [11]
    D. RUELLE-Statistical Mechanics of a one dimensional lattice gas, Comm. Math. Phys. 9, (1968), p. 267–278.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Ya. G. SINAÏ-A weak isomorphism of transformations with an invariant measure Dokl. Ak. Nauk, 147 (1962), p. 797–800.Google Scholar
  13. [13]
    Ya. G. SINAÏ-Dynamical systems with elastic reflections, Usp. Mat. Nauk, (= Russian Math. Surveys), 25, 6 (1970).Google Scholar
  14. [14]
    M. SMORODINSKY-Ergodic theory, Entropy, Lecture Notes in Maths. 214, 1971, Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

There are no affiliations available

Personalised recommendations