Problèmes mathématiques de la théorie quantique des champs II: Prolongement analytique

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 383)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. CARTIER-Problèmes Mathématiques de la Théorie Quantique des Champs, Séminaire Bourbaki, février 1971, in Lecture Notes in Maths, vol. 244, p. 106–122, Springer, 1971.MathSciNetGoogle Scholar
  2. [2]
    I. M. GELFAND and N. Ya. VILENKIN-Generalized functions, vol. 4, Academic Press, New York, 1964.Google Scholar
  3. [3]
    F. GUERRA, L. ROSEN and B. SIMON-Nelson's symmetry and the infinite volume behavior of the vacuum in P(Φ)2, Comm. Math. Phys., 27 (1972), p. 10–22.MathSciNetCrossRefGoogle Scholar
  4. [4]
    R. JOST-General theory of quantized fields, American Math. Society Publications, 1963.Google Scholar
  5. [5]
    E. NELSON-Partial differential equations (D.C. Spencer éditeur), p. 413–420, Amer. Math. Soc. Symposia vol. XXIII, Providence, 1973.Google Scholar
  6. [6]
    E. NELSON-Time-ordered operator products of sharp-time quadratic forms, Journ. Funct. Anal., 11 (1972), p. 211–219.zbMATHCrossRefGoogle Scholar
  7. [7]
    E. NELSON-Construction of quantum fields from Markoff fields, Journ. Funct. Anal., 12 (1973), p. 97–112.zbMATHCrossRefGoogle Scholar
  8. [8]
    E. NELSON-The free Markov field, Journ. Funct. Anal., idem, p. 211–227.zbMATHCrossRefGoogle Scholar
  9. [9]
    D. RUELLE-Connection between Wightman functions and Green functions in p-space, Nuovo Cimento (10), 19 (1961), p. 356–376.zbMATHMathSciNetGoogle Scholar
  10. [10]
    J. SCHWINGER-On the Euclidean structure of relativistic field theory, Proc. Nat. Acad. Sci. USA, 44 (1958), p. 956–965.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. SCHWINGER-Euclidean quantum electodynamics, Phys. Rev. 115 (1959), p. 721–731.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    I. SEGAL-Foundations of the theory of dynamical systems of infinitely many degrees of freedom, I, Mat. Phys. Medd. Kong. Danske Vides. Selskal, 31 (1959), nℴ 12.Google Scholar
  13. [13]
    I. SEGAL-Non-linear functions of weak processes: I, Journ. Funct. Anal., 4 (1969), p. 404–457; II, Journ. Funct. Anal., 6 (1970), p. 29–75.zbMATHCrossRefGoogle Scholar
  14. [14]
    B. SIMON-On the Glimm-Jaffe linear bound in P(Φ)2 field theories, Journ. Funct. Anal., 10 (1972), p. 251–258.CrossRefGoogle Scholar
  15. [15]
    R. STREATER and A. WIGHTMAN-PCT, spin, statistics and all that, Benjamin, New York, 1964.Google Scholar
  16. [16]
    K. SYMANZIK-Application of functional integrals to euclidean quantum field theory, in Analysis in Function space, M.I.T. Press, Cambridge, Mass., 1964, p. 197–206.Google Scholar
  17. [17]
    K. SYMANZIK-A method for euclidean quantum field theory, in Mathematical Theory of elementary particules, M.I.T. Press, Cambridge, Mass., 1966, p. 125–140.Google Scholar
  18. [18]
    K. SYMANZIK-Euclidean quantum field theory, in Rendiconti della Scuola Internazionale di Fisica "E. Fermi", XLV Corso, p. 152–226.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

There are no affiliations available

Personalised recommendations