Advertisement

Utilizing dynastically optimal forma recombination in hybrid genetic algorithms

  • Carlos Cotta
  • Enrique Alba
  • José M. Troya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1498)

Abstract

A heuristic recombination operator is presented in this paper. This operator intelligently explores the dynastic potential (possible children) of the solutions being recombined, providing the best combination of formae (generalised schemata) that can be constructed without introducing implicit mutation. The applicability of this operator to different kind of representations (orthogonal, separable and non-separable representations) is discussed. The experimental results confirm the appropriateness of this operator to a number of widely-known hard combinatorial problems.

Keywords

Genetic Algorithm Memetic Algorithm Hybrid Operator Flowshop Schedule Problem Recombination Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beasley J.E.: OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society 41(11):1069–1072 (1990)CrossRefGoogle Scholar
  2. 2.
    Cotta C, Aldana J.F., Nebro A.J., Troya J.M.: Hybridizing Genetic Algorithms with Branch & Bound Techniques for the Resolution of the TSP. In: Artificial Neural Nets and Genetic Algorithms, Pearson D., Steele N., Albrecht R. (editors), Springer-Verlag (1995) 277–280Google Scholar
  3. 3.
    Cotta C, Troya J.M.: On Decision-Making in Strong Hybrid Evolutionary Algorithms. In: Tasks and Methods in Applied Artificial Intelligence, Del Pobil A.P., Mira J., Ali M. (editors), Lecture Notes in Artificial Intelligence 1415, Springer-Verlag (1998) 418–427Google Scholar
  4. 4.
    Cotta C, Troya J.M.: Genetic Forma Recombination in Permutation Flowshop Problems. Evolutionary Computation 6(1):25–44 (1998)Google Scholar
  5. 5.
    Cotta C, A Study of Hybridisation Techniques and their Application to the Design of Evolutionary Algorithms, PhD Thesis, University of Málaga (1998) — in SpanishGoogle Scholar
  6. 6.
    Eiben A.E., Raue P.-E., Ruttkay Zs.: Genetic Algorithms with Multi-parent Recombination. In: Parallel Problem Solving from Nature 3, Davidor Y., Schwefel H.P., Männer R. (editors), Lecture Notes in Computer Science 866, Springer-Verlag (1994) 78–87Google Scholar
  7. 7.
    Goldberg D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading MA (1989)Google Scholar
  8. 8.
    Mitchell D., Selman B., Levesque H.: Hard and Easy Distributions of SAT Problems. In: Proceedings of the 10th National Conference on Artificial Intelligence, San José CA (1992) 459–465Google Scholar
  9. 9.
    Moscató P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. C3P Report 826 (1989)Google Scholar
  10. 10.
    Radcliffe N.J.: Equivalence Class Analysis of Genetic Algorithms. Complex Systems 5:183–205 (1991)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Radcliffe N.J.: Forma Analysis and Random Respectful Recombination. In: Proceedings of the 4th International Conference on Genetic Algorithms, Belew R., Booker L. (editors), Morgan Kaufmann, San Mateo CA (1991) 222–229Google Scholar
  12. 12.
    Radcliffe N.J.: The Algebra of Genetic Algorithms. Annals of Mathemathics and Artificial Intelligence 10:339–384 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Radcliffe N.J., Surry P.D.: Fitness Variance of Formae and Performance Prediction. In: Foundations of Genetic Algorithms 3, Whitley L.D., Vose M.D. (editors), Morgan Kaufmann, San Mateo CA (1994) 51–72Google Scholar
  14. 14.
    Starkweather T., McDaniel S., Mathias K., Whitley D., Whitley C: A Comparison of Genetic Sequencing Operators, In: Proceedings of the 4th International Conference on Genetic Algorithms, Belew R., Booker L. (editors), Morgan Kaufmann, San Mateo CA (1991) 69–76Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Carlos Cotta
    • 1
  • Enrique Alba
    • 1
  • José M. Troya
    • 1
  1. 1.Dept. of Lenguajes y Ciencias de la ComputaciónUniv. of MálagaMálagaSpain

Personalised recommendations