Advertisement

Where elitists start limping evolution strategies at ridge functions

  • Ahmet Irfan Oyman
  • Hans-Georg Beyer
  • Hans-Paul Schwefel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1498)

Abstract

How well an optimization algorithm satisfies short-term and long-term goals, can be verified using appropriate test functions, respective convergence measures, theoretical analysis, and simulations. This paper analyses the convergence behavior of the evolution strategy (ES) at the parabolic ridge function using the standard (1+,λ)-ES. Some further results are given for the case of more general ridge functions. The results obtained are counter-intuitive and different from if not contrary to those obtained from the sphere model theory. Furthermore, using static analysis, we show that the progress rate and the quality gain possess entirely different characteristics.

Keywords

ridge functions Evolution Strategy elitist ES progress rate quality gain convergence behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bey93]
    H.-G. Beyer. Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1+, λ)-Theory. Evolutionary Computation, 1(2):165–188, 1993.Google Scholar
  2. [Bey94]
    H.-G. Beyer. Towards a Theory of ‘Evolution Strategies': Progress Rates and Quality Gain for (1,+λ)-Strategies on (Nearly) Arbitrary Fitness Functions. In Y. Davidor, R. Männer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature, 3, pages 58–67, Heidelberg, 1994. Springer.Google Scholar
  3. [Bey96]
    H.-G. Beyer. Toward a Theory of Evolution Strategies: Self-Adaptation. Evolutionary Computation, 3(3):311–347, 1996.Google Scholar
  4. [BFM97]
    Th. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. Oxford University Press, New York, and Institute of Physics Publishing, Bristol, 1997.Google Scholar
  5. [Her92]
    M. Herdy. Reproductive Isolation as Strategy Parameter in Hierarchically Organized Evolution Strategies. In R. Männer and B. Manderick, editors, Parallel Problem Solving from Nature, 2, pages 207–217, Amsterdam, 1992. Elsevier.Google Scholar
  6. [KS70]
    J. Klockgether and H.-P. Schwefel. Two-phase nozzle and hollow core jet experiments. In D. G. Elliott, editor, Proc. Eleventh Symp. Engineering Aspects of Magnetohydrodynamics, pages 141–148, Pasadena CA, March 24–26 1970. California Institute of Technology.Google Scholar
  7. [OBS97]
    A. I. Oyman, H.-G. Beyer, and H.-P. Schwefel. Analysis of a Simple ES on the “Parabolic Ridge”. Technical Report SyS-2/97, University of Dortmund, Department of Computer Science, Systems Analysis Research Group, August 1997. http://lsll-www.cs.uni-dortmund.de/people/oyman/TR.ps.gz.Google Scholar
  8. [OBS98]
    A. I. Oyman, H.-G. Beyer, and H.-P. Schwefel. Convergence Behavior of the (1+,λ) Evolution Strategy on the Ridge Functions. Technical Report SyS-1/98, University of Dortmund, Department of Computer Science, Systems Analysis Research Group, February 1998. http://ls11-www.cs.uni-dortmund.de/people/oyman/TR/TR2.ps.gz.Google Scholar
  9. [Pin97]
    A. Pinkus. Approximating by Ridge Functions. In A. Le Mehaute, C. Rabut, and L. L. Schumaker, editors, Surface Fitting and Multiresolution Methods, pages 279–292. Vanderbilt University Press, Nashville, 1997.Google Scholar
  10. [Rec65]
    I. Rechenberg. Cybernetic solution path of an experimental problem. Library translation 1122, Royal Aircraft Establishment, Farnborough, 1965.Google Scholar
  11. [Rec71]
    I. Rechenberg. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Dr.-Ing. Dissertation (PhD Thesis), Technical University of Berlin, Department of Process Engineering, 1971.Google Scholar
  12. [Rec78]
    I. Rechenberg. Evolutionstrategien. In B. Schneider and U. Ranft, editors, Simulationsmethoden in der Medizin und Biologie, pages 83–114. Springer, Berlin, 1978.Google Scholar
  13. [Rec94]
    I. Rechenberg. Evolutionsstrategie '94, volume 1 of Werkstatt Bionik und Evolutionstechnik. Frommann-Holzboog, Stuttgart, 1994.Google Scholar
  14. [Rud97]
    G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovač, Hamburg, 1997.Google Scholar
  15. [Sal96]
    R. Salomon. Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. BioSystems, 39(3):263–278, 1996.CrossRefGoogle Scholar
  16. [Sch75]
    H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. Dr.-Ing. Dissertation (PhD Thesis), Technical University of Berlin, Department of Process Engineering, 1975.Google Scholar
  17. [SR95]
    H.-P. Schwefel and G. Rudolph. Contemporary Evolution Strategies. In F. Morán, A. Moreno, J. J. Merelo, and P. Chacón, editors, Advances in Artificial Life. Third International Conference on Artificial Life, pages 893–907. Springer, Berlin, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Ahmet Irfan Oyman
    • 1
  • Hans-Georg Beyer
    • 1
  • Hans-Paul Schwefel
    • 1
  1. 1.University of DortmundGermany

Personalised recommendations