Advertisement

A model for parallel one dimensional eigenvalues and eigenfunctions calculations

  • Antonio Laganà
  • Gaia Grossi
  • Antonio Riganelli
  • Gianni Ferraro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1497)

Abstract

The calculation of eigenvalues and eigenfunctions of one-dimensional cuts of reactive potentials is often a key step of scattering calculations of higher dimensions. Parallelized versions of related computer codes do not consider a parallelization at the level of individual eigenvalue calculations. In this paper we present an attempt to push the parallelism to this level and compare the sequential and parallel performances of the restructured code.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Light, In The Theory of Chemical Reaction Dynamics ed. by D.C. Clary, Reidel, Dordrecht (1986) p. 215.Google Scholar
  2. 2.
    Y.M. Wu, S.A. Cuccaro, P.G. Hipes, and A. Kuppermann, Theor. Chim. Acta 79, 225 (1991).CrossRefGoogle Scholar
  3. 3.
    J. Manz, Mol. Phys. 28, 399 (1974).CrossRefGoogle Scholar
  4. 4.
    J. Manz, Mol. Phys. 30, 899 (1975).CrossRefGoogle Scholar
  5. 5.
    J.N.L. Connor, W. Jakubetz, and J. Manz, Mol. Phys. 29, 347 (1975).CrossRefGoogle Scholar
  6. 6.
    R.B. Walker, and E. Hayes, In The Theory of Chemical Reaction Dynamics ed. by D.C. Clary, Reidel, Dordrecht (1986) p. 105.Google Scholar
  7. 7.
    E.F. Hayes, Z. Darakjian, and R.B. Walker, Theor. Chim. Acta 79, 199 (1991).CrossRefGoogle Scholar
  8. 8.
    D.C. Clary, and J.P. Henshaw, In The Theory of Chemical Reaction Dynamics ed. by D.C. Clary, Reidel, Dordrecht (1986) p. 331.Google Scholar
  9. 9.
    L. Fox, Numerical Solutions of two-points Boundary problems in Ordinary Differential Equations, Oxford, London (1957).Google Scholar
  10. 10.
    D.F. Mayers, Numerical Solutions of Ordinary and Partial Differential Equations, Pergamon, New York (1962), Chap. 7.Google Scholar
  11. 11.
    H. Heller, Numerical Methods for two-points Boundary value problems: Shooting Methods, Oxford, London (1957).Google Scholar
  12. 12.
    J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker and R.C. Whaley, Lecture Notes in Comp. Science 1041, 107 (1996).Google Scholar
  13. 13.
    J.C. Light, I.P. Hamilton, and J.V. Lill, J. Chem. Phys. 82, 1400 (1985).CrossRefGoogle Scholar
  14. 14.
    J.M. Cooley, Math. Comp. 15, 363 (1961).MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Laganà, E. Garcia, and O. Gervasi, J. Chem. Phys. 89, 7238 (1988).CrossRefGoogle Scholar
  16. 16.
    A. Laganà, E. Garcia, O. Gervasi, R. Baraglia, D. Laforenza, and R. Perego, Theor. Chim. Acta 79, 323 (1991).CrossRefGoogle Scholar
  17. 17.
    R. Baraglia, D. Laforenza, and A. Laganà, Lecture Notes in Comp. Science 919, 554 (1995).CrossRefGoogle Scholar
  18. 18.
    R. Baraglia, R. Ferrini, D. Laforenza, A. Laganà, MPCS96, 200 (1996); A. Bolloni, A. Riganelli, S. Crocchianti, and A. Laganà, Parallel quantum scattering calculations applied to Dynamics of elementary Reactions, Lecture notes in Computer Science (present issue).Google Scholar
  19. 19.
    L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Pergamon, New York (1977), Chap. 3.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Antonio Laganà
    • 1
  • Gaia Grossi
    • 1
  • Antonio Riganelli
    • 1
  • Gianni Ferraro
    • 2
  1. 1.Dipartimento di ChimicaUniversità di PerugiaPerugiaItaly
  2. 2.Istituto di ChimicaPolitecnico di BariBariItaly

Personalised recommendations