Advertisement

Volumetric image guidance via a stereotactic endoscope

  • Ramin Shahidi
  • Bai Wang
  • Marc Epitaux
  • Robert Grzeszczuk
  • John Adler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

We have developed a surgical setup based on modern frameless stereotactic techniques that enables surgeons to visualize the field of view of the surgical endoscope, overlaid with the real-time and volumetrically reconstructed medical images, of a localized area of the patient’s anatomy. Using this navigation system, the surgeon visualizes the surgical site via the surgical endoscope, while exploring the inner layers of the patient’s anatomy by utilizing the three-dimensionally reconstructed image updates obtained by pre-operative images, such as Magnetic Resonance and/or Computed Tomography Imaging. This system also allows the surgeon to virtually “fly through and around” the site of the surgery to visualize several alternatives and qualitatively determine the best surgical approach. Moving endoscopes are tracked with infra-red stereovision cameras and diodes, allowing the determination of their spatial relation to the target lesion and the fiducial based patient/image registration.

Keywords

Fiducial Marker Volumetric Image Surgical Endoscope Optical Tracking System Navigation Software 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    TM. Peters, A. Olivier. “CT-aided stereotaxy for depth electrode implantation and biobsy,” Canadian Journal of Neurological Sciences, 10:166–169, 1983.CrossRefPubMedGoogle Scholar
  2. 2.
    P. Gildenberg, HH. Kaufman, KSM. Murthy, “Calculation of stereotactic coordinates from computed tomography scan,” Neurosurgery, 10:580–586, 1982.CrossRefPubMedGoogle Scholar
  3. 3.
    P. Kelly, B. Ball, S. Goerss, “Results of computer tomography-based stereotactic resection of metastatic intracranial tumors,” Neurosurgery 22:7–17, 1988.CrossRefPubMedGoogle Scholar
  4. 4.
    RJ. Maciunas, RL. Galloway, JW. Latimer. “The Application Accuracy of Stereotactic Frames Neurosurgery,” 35(4):682–695, 1994.PubMedGoogle Scholar
  5. 5.
    B. Guthrie and JR. Adler. Frameless Stereotaxy: Computer Interactive Neurosurgery. Perspectives in Neurological Surgery. 2(1):1–22, 1991.Google Scholar
  6. 6.
    WB. Legget, MM. Greenberg, WEJ. Gannon, “The Viewing wand: a new system for three-dimensional CT correlated intraoperative localization,” Current Surgery, 1991, 48:674–678.Google Scholar
  7. 7.
    P.F. Hemler, T. Koumrian, J.R. Adler, and B. Guthrie,” A Three Dimensional Guidance System for Frameless Stereotactic Neurosurgery,” In Proc. of the Fifth Annual IEEE Symposium on Computer-Based Medical Systems, pages 309–314, Durham, North Carolina, 6/92.Google Scholar
  8. 8.
    JW. Trobaugh, WD. Richard, KR. Smith, RD. Bucholz, “Frameless stereotactic ultrasonography: method and applications,” Compute Med. Imaging Graph 1994 Jul;18(4):235–246.CrossRefGoogle Scholar
  9. 9.
    KR. Smith, KJ. Frank, and RD. Bucholtz. “The Neurostation — A Highly Accurate, Minimally Invasive Solution to Frameless Stereotactic Neurosurgery,” Computerized Medical Imaging and Graphics, 18(4):247–256, 1994.CrossRefPubMedGoogle Scholar
  10. 10.
    P. Cinquin, E. Bainville, C. Barbe, et., al,.”Computer Assisted Medical Interventions,” IEEE Engineering in Medicine and Biology, pages 254–263, 1995.Google Scholar
  11. 11.
    S. Lavallee, J. Troccaz, P. Sautot, B. Mazier, P. Cinquin, and P. Merloz, “Computer-Assisted Spinal Surgery Using Anatomy-Based Registration. In Computer-Integrated Surgery,’ R.H. Taylor et al. (eds), pp 425–449, MIT Press, 1995.Google Scholar
  12. 12.
    LP. Nolte, H. Visarius, E. Arm, F. Langlotz, O. Schwarzenbach, L. Zamorano, “Computer Aided Fixation of Spinal Implants,” Jour of IGS, 1:65–73, 1995.Google Scholar
  13. 13.
    HF. Reinhardt. “Neuronavigation: A Ten-Year Review. In Computer-Integrated Surgery,” RH. Taylor et al. (eds), pages 329–341, MIT Press, 1995.Google Scholar
  14. 14.
    RD. Bucholtz, DD. Yeh, J. Trobaugh, et., al. “The Correction of Stereotactic Inaccuracy Caused by Brain Shift Using an Intraoperative Ultrasound Device,” in Proc. CVRMed-MRCAS’97, pages 459–466, Grenoble, France, 1997.Google Scholar
  15. 15.
    R. Kikinis, I. Gleason, W. Lorensen, W Wells, WE Grimson, T Lozano-Perez, G. Ettinger, S. White, F. Jolesz, “Image Guided Techniques for Neurosurgery,” In Proc. VBC 94, pp. 537–540, Rochester, 1994.Google Scholar
  16. 16.
    R. Shahidi, “Applications of Virtual Reality in Stereotactic Procedures: Volumetric Image Navigation via Surgical Microscope” Ph.D. Thesis, Rutgers University, Submitted 1994.Google Scholar
  17. 17.
    W.E.L. Grimson, T. Lozano-Perez, W. M. Wells III, G. J. Ettinger, S. J. White, and R. Kikinis. “An Automatic Registration Method for Frameless Stereotaxis, Image Guided Surgery, and Enhanced reality Visualization,” in Proc. IEEE Compt Vis and Patt. Recog., pp. 430–436, 1994.Google Scholar
  18. 18.
    ACF Colchester, J Zhao, CHenri, RL Evans, P Roberts, N. Maitland, DJ Hawkes, DLG Hill, AJ Strong, DG. Thomas, MJ Gleeson, TCS Cox,” In Proc. VBC 94, pp. 541–551, Rochester, 1994.Google Scholar
  19. 19.
    R. Shahidi, R. Mezrich, D. Silver, “Proposed Simulation of Volumetric Image Navigation Using a Surgical Microscope,” Jour Img Guid Surg, 1:249–265, 1995.CrossRefGoogle Scholar
  20. 20.
    A.C.F. Colchester et al. Development and Preliminary Evaluation of VISLAN, a Surgical Planning and Guidance System Using Intraoperative Video Imaging. Med Image Analysis, 1(1):73–90, 1996.CrossRefGoogle Scholar
  21. 21.
    K. Darabi, KD. Resch, J. Weinert, U. Jendrysiak, A. Perneczky, “Real and Simulated Endoscopy of Neurological Approaches in an Anatomical Model”, In Proc., CVRMed-MRCAS, pp. 323–326, Grenoble, France, 1997.Google Scholar
  22. 22.
    Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. “Volume rendering. Computer Graphics” (ACM SIGGRAPH Proceedings), 22(4):65–74, 1988.CrossRefGoogle Scholar
  23. 23.
    M. Levoy, “Display of Surfaces from Volume Data”, IEEE Computer graphics & Applications 0272-1716/88/0500-0029., 1988.Google Scholar
  24. 24.
    M. Levoy, “A Hybrid Ray Tracer for Rendering Polygon and Volume Data. IEEE Computer graphics & Applications 0272-1716/90/0300-0033., 1990.Google Scholar
  25. 25.
    M. Levoy, “Efficient Ray Tracing of Volume Data”, ACM Trans. Graph., 9(3):245 261, 1990.CrossRefGoogle Scholar
  26. 26.
    B. Cabral, N. Cam, J. Foran. Accelerated Volume Rendering and Tomographic Reconstruction using Texture Mapping Hardware. In Proceedings of the 1994 Symposium on Volume Visualization, pages 91–98, 1994.Google Scholar
  27. 27.
    P. Lacroute and M. Levoy, “Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation,” In Proc. of SIGGRAPH ’94, Orlando, FL, pages 451–458, 1994.Google Scholar
  28. 28.
    Kortokov E., Henriksen K., Kories R., Stereo Ranging with Verging Cameras, IEEE PAMI, Vol. 12, NO. 12 Dec. 1990.Google Scholar
  29. 29.
    Alvertos N., Brzakovic D., Gonzalez R C., Camera Geometries for Image Matching in 3D Machine Vision: IEEE on Pattern Analysis and Machine Intelligence (PAMI), Vol 11, NO. 9. 9/1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Ramin Shahidi
    • 1
  • Bai Wang
    • 1
  • Marc Epitaux
    • 1
  • Robert Grzeszczuk
    • 2
  • John Adler
    • 1
  1. 1.Department of Neurosurgery, Image Guidance LaboratoryStanford UniversityStanfordUSA
  2. 2.Silicon Graphics, Inc.Mountain ViewUSA

Personalised recommendations