Advertisement

Fast quantification of abdominal aortic aneurysms from CTA volumes

  • O. Wink
  • W. J. Niessen
  • M. A. Viergever
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

A method is presented which aids the clinician in obtaining quantitative measurements of an abdominal aortic aneurysm from a CTA volume. These measurements are needed in the preoperative evaluation of candidates for minimally invasive aneurysmal repair. The user initializes starting points in the iliac artery. Subsequently, an iterative tracking procedure outlines the central lumen line in the aorta and the iliac arteries. Quantitative measurements on vessel morphology are performed in the planes perpendicular to the vessel axis. The entire process is performed in less than one minute on a standard workstation. In addition to the presentation of the calculated measures, a 3D view of the vessels is generated. This allows for interactive inspection of the vasculature and the tortuosity of the vessels.

Keywords

Iliac Artery Abdominal Aortic Aneurysm Abdominal Aortic Aneurysm Endovascular Repair Active Contour Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    I. A. J. M. Broeders, J. D. Blankensteijn, M. Olree, W. P. Th. M. Mali, and B. C. Eikelboom. Preoperative sizing of grafts for transfemoral endovascular aneurysm management: a prospective comparative study of spiral CT angiography, arteriography, and conventional CT imaging. Journal of Endovascular Surgery, 4:252–261, 1997.CrossRefPubMedGoogle Scholar
  2. 2.
    C. Lorenz, I. C Carlsen, T. M. Buzug, C. Fassnacht, and J. Weese. Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In Proc. CVRMed and MRCAS 1997, number 1205 in Lecture notes in Computer Science, pages 233–242. Springer Verlag, Berlin, 1997.Google Scholar
  3. 3.
    V. Prinet and O. Monga. Vessel representation in 2D and 3D angiograms. In H. U. Lemke, M. W. Vannier, and K. Inamura, editors, Computer Assisted Radiology and Surgery, pages 240–245. Elsevier Publishers, Amsterdam, 1997.Google Scholar
  4. 4.
    Th. M. Koller, G. Gerig, G. Székely, and D. Dettwiler. Multiscale detection of curvilinear structures in 2D and 3D image data. In Fifth International Conference on Computer Vision, pages 864–869, 1995.Google Scholar
  5. 5.
    A. B. Houtsmuller, A. W. M. Smeulders, H. T. M. van der Voort, J. L. Oud, and N. Nanninga. The homing cursor: A tool for three-dimensional chromosome analysis. Cytometry, 14:501–509, 1993.CrossRefPubMedGoogle Scholar
  6. 6.
    T. O’Donnel, A. Gupta, and T. Boult. A new model for the recovery of cylindrical structures from medical image data. In Proc. CVRMed and MRCAS 1997, number 1205 in Lecture notes in Computer Science, pages 223–232. Springer Verlag, Berlin, 1997.Google Scholar
  7. 7.
    V. Julian, B. Nazarian, K. Malkani, R. Bulot, J. M. Bartoli, and J. Sequeira. Geometrical modelling of abdominal aortic aneurysms. In Proc. CVRMed and MRCAS 1997, number 1205 in Lecture notes in Computer Science, pages 243–252. Springer Verlag, Berlin, 1997.Google Scholar
  8. 8.
    J. Beier, R. Siekmann, F. Müller, J. Tröger, H. Schedel, G. Biamino, E. Fleck, and R. Felix. Planning and control of aortic stent implantations using 3D reconstructions based on computer tomography. In H. U. Lemke, M. W. Vannier, and K. Inamura, editors, Computer Assisted Radiology, pages 716–720. Elsevier Publishers, Amsterdam, 1996.Google Scholar
  9. 9.
    M. Fiebich, M. Tomiak Mitchell, R. M. Engelmann, and K. R. Hoffmann. Automatic segmentation in CT angiography of the abdominal aorta. In H. U. Lemke, M. W. Vannier, and K. Inamura, editors, Computer Assisted Radiology and Surgery, pages 277–282. Elsevier Publishers, Amsterdam, 1997.Google Scholar
  10. 10.
    M. Kass, A. P. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1:321–331, 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • O. Wink
    • 1
  • W. J. Niessen
    • 1
  • M. A. Viergever
    • 1
  1. 1.Image Sciences Institute, Room E 01.334University Hospital UtrechtCX Utrechtthe Netherlands

Personalised recommendations