Advertisement

Clinical experience with a high precision image-guided neurosurgery system

  • E. Grimson
  • M. Leventon
  • G. Ettinger
  • A. Chabrerie
  • F. Ozlen
  • S. Nakajima
  • H. Atsumi
  • R. Kikinis
  • P. Black
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

We describe an image-guided neurosurgery system which we have successfully used on 70 cases in the operating room. The system is designed to achieve high positional accuracy with a simple and efficient interface that interferes little with the operating room’s usual procedures, but is general enough to use on a wide range of cases. It uses data from a laser scanner or a trackable probe to register segmented MR imagery to the patient’s position in the operating room, and an optical tracking system to track head motion and localize medical instruments. Output visualizations for the surgeon consist of an “enhanced reality display,” showing location of hidden internal structures, and an instrument tracking display, showing the location of instruments in the context of the MR imagery. Initial assessment of the system in the operating room indicates a high degree of robustness and accuracy.

Keywords

Transcranial Magnetic Stimulation Verification Tool Optical Tracking System Laser Data Trackable Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Actams, et al., “An Optical Navigator for Brain Surgery”. IEEE Computer, 29 (1):48–54, Jan. 1996.CrossRefGoogle Scholar
  2. 2.
    D.R. Bucholtz, K.R. Smith. “A Comparison of Sonic Digitizers Versus Light Emitting Diode-Based Localization”. R.J. Maciunas, ed., Interactive Image-Guided Neurosurgery, Amer. Assoc. Neur. Surg., 1993.Google Scholar
  3. 3.
    A. Chabrerie, F. Ozlen, S. Nakajima, M. Leventon, H. Atsumi, E. Grimson, E. Keeve, S. Helmers, J. Riviello, G. Holmes, F. Duffy, F. Jolesz, R. Kikinis, P. Black, “Three-Dimensional Reconstruction and Surgical Navigation in Pediatric Epilepsy Surgery”, Medical Image Computation and Computer Assisted Interventions, Boston, October 1998.Google Scholar
  4. 4.
    P. Cinquin et al., “Computer Assisted Medical Interventions”. IEEE EMB, 254–263, May/June 1995.Google Scholar
  5. 5.
    A.C.F. Colchester et al., “Development and Preliminary Evaluation of VISLAN, a Surgical Planning and Guidance System Using Intra-Operative Video Imaging”. Medical Image Analysis, 1 (1):73–90, March 1996.CrossRefPubMedGoogle Scholar
  6. 6.
    G. Ettinger, “Hierarchical three-dimensional medical image registration”, Ph.D. Thesis, MIT, 1997.Google Scholar
  7. 7.
    G. Ettinger, et al., “Experimentation with a Transcranial Magnetic Stimulation System for Functional Brain Mapping”, Medical Image Analysis, 2(2):133–142, 1998.CrossRefPubMedGoogle Scholar
  8. 8.
    R. Galloway. “Stereotactic Frame Systems and Intraoperative Localization Devices”. R. Maciunas, ed., Interactive Image-Guided Neurosurgery, Amer. Assoc. Neur. Surg., 1993.Google Scholar
  9. 9.
    W.E.L. Grimson, et al., “An Automatic Registration Method for Frameless Stereotaxy, Image Guided Surgery, and Enhanced Reality Visualization”, Comp. Vis. and Pattern Recognition Conference, Seattle, June 1994.Google Scholar
  10. 10.
    W.E.L. Grimson, et al., “Evaluating and Validating an Automated Registration System for Enhanced Reality Visualization in Surgery”. First CVRMED, Nice France, April 1995, pp. 3–12.Google Scholar
  11. 11.
    W.E.L. Grimson, et al., “An Automatic Registration Method for Frameless Stereotaxy, Image Guided Surgery, and Enhanced Reality Visualization”. IEEE TMI, 15(2):129–140, April 1996.Google Scholar
  12. 12.
    B. Horn. “Closed-form Solution of Absolute Orientation Using Unit Quaternions”. JOSA A, 4:629–642, April 1987.CrossRefGoogle Scholar
  13. 13.
    T. Kapur, W.E.L. Grimson, R. Kikinis. “Segmentation of Brain Tissue from MR Images”. First CVRMED, Nice France, April 1995, pp. 429–433.Google Scholar
  14. 14.
    W.E. Lorensen, H.E. Cline. “Marching Cube: A High Resolution 3-D Surface Construction Algorithm”. Computer Graphics, 21(3):163–169, 1987.CrossRefGoogle Scholar
  15. 15.
    R. Maciunas, et al., “Beyond Stereotaxy: Extreme Levels of Application Accuracy Are Provided by Implantable Fiducial Markers for Interactive Image-Guided Neurosurgery”. R.J. Maciunas, ed., Interactive Image-Guided Neuro surgery, Amer. Assoc. Neur. Surg., 1993.Google Scholar
  16. 16.
    T. McInerney, D. Terzopoulos. “Medical image segmentation using topologically adaptable snakes”. CVR Med 1995.Google Scholar
  17. 17.
    T. Peters, et al., “Three-Dimensional Multimodal Image-Guidance for Neurosurgery”. IEEE TMI, 15(2):121–128, April 1996.Google Scholar
  18. 18.
    M.J. Ryan, et al., “Frameless Stereotaxy with Real-Time Tracking of Patient Head Movement and Retrospective Patient-Image Registration”. J. Neurosurgery, 85:287–292, August 1996.CrossRefGoogle Scholar
  19. 19.
    G. Szekely, et al. “Segmentation of 3d objects from MRI volume data using constrained elastic deformations of flexible fourier surface models”. CVRMed 1995.Google Scholar
  20. 20.
    S. Tebo, et al., “An Optical 3D Digitizer for Frameless Stereotactic Surgery”. IEEE Comp. Graph. Appl, 16(1):55–64, Jan. 1996.CrossRefGoogle Scholar
  21. 21.
    K.L. Vincken, A.S.E. Koster, M.A. Viergever. “Probabilisitc hyperstack segmentation of MR Brain Data”, CVRMed, 1995.Google Scholar
  22. 22.
    S. Warfield, et al., “Automatic identification of grey matter structures from MRI to improve the segmentation of white matter lesions”. Journal of Image Guided Surgery 1(6):326–338, June 1996.CrossRefGoogle Scholar
  23. 23.
    E. Watanabe, “The Neuronavigator: A Potentiometer-Based Localizing Arm System”. R. Maciunas, ed., Interactive Image-Guided Neurosurgery, Amer. Assoc. Neur. Surg., 1993.Google Scholar
  24. 24.
    W.M. Wells. “Adaptive Segmentation of MRI Data”. First CVRMED, Nice France, April 1995, pp. 59–69.Google Scholar
  25. 25.
    W.M. Wells, III, W.E.L. Grimson, R. Kikinis, F.A. Jolesz, “Actaptive Segmentation of MRI data”, IEEE Trans. Medical Imaging, 15(4):429–442, August 1996.CrossRefPubMedGoogle Scholar
  26. 26.
    W.M. Wells, et al. “Multi-modal volume registration by maximization of mutual information” Medical Image Analysis, 1(1): 35–51, 1996.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • E. Grimson
    • 1
  • M. Leventon
    • 1
  • G. Ettinger
    • 4
  • A. Chabrerie
    • 2
  • F. Ozlen
    • 3
  • S. Nakajima
    • 2
  • H. Atsumi
    • 3
  • R. Kikinis
    • 2
  • P. Black
    • 3
  1. 1.MIT AI LaboratoryCambridgeUSA
  2. 2.Harvard Medical SchoolRadiology, Brigham & Womens HospitalBostonUSA
  3. 3.Harvard Medical SchoolNeurosurgery, Brigham & Womens HospitalBostonUSA
  4. 4.AlphatechBurlingtonUSA

Personalised recommendations