Knowledge discovery for flexible querying

  • Henrik L. Larsen
  • Troels Andreasen
  • Henning Christiansen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1495)


We present an approach to flexible querying by exploiting similarity knowledge hidden in the information base. The knowledge represents associations between the terms used in descriptions of objects. Central to our approach is a method for mining the database for similarity knowledge, representing this knowledge in a fuzzy relation, and utilizing it in softening of the query. The approach has been implemented, and an experiment has been carried out on a real-world bibliographic database. The experiments demonstrated that without much sophistication in the system, we can automatically to derive domain knowledge that corresponds to human intuition, and utilize this knowledge to obtain a considerable increase in the quality of the search system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Larsen, H.L., Andreasen, T. (eds.): Flexible Query-Answering Systems. Proceedings of the first workshop (FQAS'94). Datalogiske Skrifter No. 58, Roskilde University, 1995.Google Scholar
  2. 2.
    Christiansen, H., Larsen, H.L., Andreasen, T. (eds.): Flexible Query-Answering Systems. Proceedings of the second workshop (FQAS'94). Datalogiske Skrifter No. 62, Roskilde University, 1996.Google Scholar
  3. 3.
    Andreasen, T., Christiansen, H., Larsen T. (eds.): Flexible Query Answering Systems. Kluwer Aademic Publishers, Boston/Dordrecht/London, 1997.Google Scholar
  4. 4.
    Andreasen, T.: Dynamic Conditions. Datalogiske Skrifter, No. 50, Roskilde University, 1994.Google Scholar
  5. 5.
    Andreasen, T.: On flexible query answering from combined cooperative and fuzzy approaches. In: Proc. 6'th IFSA, Sao Paulo, Brazil, 1995.Google Scholar
  6. 6.
    Larsen, H.L., Yager, R.R.: The use of fuzzy relational thesauri for classificatory problem solving in information retrieval and expert systems. IEEE J. on System, Man, and Cybernetics 23(1):31–41 (1993).MATHCrossRefGoogle Scholar
  7. 7.
    Larsen, H.L., Yager, R.R.: Query Fuzzification for Internet Information retrieval. In D. Dubois, H. Prade, R.R. Yager, Eds., Fuzzy Information Engineering: A Guided Tour of Applications, John Wiley & Sons, pp. 291–310, 1996.Google Scholar
  8. 8.
    Yager, R.R., Larsen, H.L.: Retrieving Information by Fuzzification of Queries. em International Journal of Intelligent Information Systems 2 (4) (1993).Google Scholar
  9. 9.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. em IEEE Transactions on Systems, Man and Cybernetics 18 (1):183–190 (1988).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Henrik L. Larsen
    • 1
  • Troels Andreasen
    • 1
  • Henning Christiansen
    • 1
  1. 1.Department of Computer ScienceRoskilde UniversityRoskilde

Personalised recommendations