Advertisement

A server for Fuzzy SQL queries

  • José Galindo
  • Juan M. Medina
  • Olga Pons
  • Juan C. Cubero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1495)

Abstract

The client-server model is being used mostly in the actual DataBase Management Systems (DBMS). However, these DBMS do not allow either to make flexible queries to the database or to store vague information in it. We have developed a FSQL Server for a Fuzzy Relational Database (FRDB). The FSQL language (Fuzzy SQL) is an extension of the SQL language that allows us to write flexible conditions in our queries. This Server has been developed for Oracle, following the model GEFRED, a theoric model for FRDB that includes fuzzy attributes to store vague information in the tables. The FSQL Server allows us to make flexible queries about traditional (crisp) or fuzzy attributes and we can use linguistic labels defined on any attribute.

Keywords

Information Storage and Retrieval Flexible and Fuzzy Queries Fuzzy Relational Databases Fuzzy SQL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bosc, O. Pivert, K. Farquhar, “Integrating Fuzzy Queries into an Existing Database Management System: An Example”. International Journal of Intelligent Systems, Vol. 9, 475–492 (1994).Google Scholar
  2. 2.
    B.P. Buckles, F.E. Petry, “A Fuzzy Representation of Data for Relational Databases”. Fuzzy Sets and Systems 7, 213–226 (1982).MATHCrossRefGoogle Scholar
  3. 3.
    B.P. Buckles, F.E. Petry, “Extending the Fuzzy Database with Fuzzy Numbers”. Information Sciences 34, 145–155 (1984).MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    D.D. Chamberlin, R.F. Boyce, “SEQUEL: A Structured English Query Language”. Proc. ACM SIGMOD Workshop on Data Description. Access and Control, 1974.Google Scholar
  5. 5.
    D.D. Chamberlin et al., “SEQUEL 2: A Unified Approach to Data Definition, Manipulation and Control”. IBM J. R&D 20, num. 6, November, 1976.Google Scholar
  6. 6.
    E.F. Codd, “A Relational Model of Data for Large Shared Data Bases”. Communications of the ACM, 13, no. 6, 377–387, June 1970.MATHCrossRefGoogle Scholar
  7. 7.
    S. Fukami, M. Umano, M. Muzimoto, H. Tanaka, “Fuzzy Database Retrieval and Manipulation Language”, IEICE Technical Reports, Vol. 78, Nℴ 233, pp. 65–72, AL-78-85 (Automata and Language) (1979).Google Scholar
  8. 8.
    J. Galindo, J.M. Medina, M.C. Aranda, “Una solución al problema de la División Relacional Difusa”. VII Congreso Español sobre Tecnologías y Lógica Fuzzy (ESTYLF'97). Tarragona (Spain), September 1997.Google Scholar
  9. 9.
    J. Galindo, J.M. Medina, J.C. Cubero, “How to Obtain the Fulfilment Degrees of a Query using Fuzzy Relational Calculus”. To appear in “Knowledge management in Fuzzy Databases”. Eds. O. Pons, M.A. Vila and J. Kacprzyk. Ed. Physica-Verlag, 1998.Google Scholar
  10. 10.
    J. Galindo, J.M. Medina, O. Pons, M.A. Vila, J.C. Cubero, “A prototype for a fuzzy relational database”. Demo session in the 6th International Conference on Extending Database Technology, Valencia (Spain), March 1998.Google Scholar
  11. 11.
    J. Galindo, J.M. Medina, A. Vila, O. Pons, “Fuzzy Comparators for Flexible Queries to Databases”. Iberoamerican Conference on Artificial Intelligence, IBERAMIA'98, Lisbon (Portugal), October 1998.Google Scholar
  12. 12.
    J.M. Medina, O. Pons, M.A. Vila, “GEFRED. A Generalized Model of Fuzzy Relational Databases”. Information Sciences, 76(1–2), 87–109 (1994).CrossRefGoogle Scholar
  13. 13.
    J.M. Medina R., “Bases de Datos relationales difusas. Modelo teórico y aspectos de su implementación”. Ph. Doctoral Thesis, University of Granada, May 1994.Google Scholar
  14. 14.
    H. Prade, C. Testemale, “Generalizing Database Relational Algebra for the Treatment of Incomplete or Uncertain Information and Vague Queries”. Information Sciences 34, 115–143 (1984).MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Prade, C. Testemale, “Fuzzy Relational Databases: Representational issues and Reduction Using Similarity Measures”. J. Am. Soc. Information Sciences 38(2), 118–126 (1987).CrossRefGoogle Scholar
  16. 16.
    V. Tahani, “A Conceptual Framework for Fuzzy Query Processing-A Step toward Very Intelligent Database Systems”. Information Process. Management, 13, 289–303 (1977).MATHCrossRefGoogle Scholar
  17. 17.
    M. Umano, S. Fukami, M. Mizumoto, K. Tanaka, “Retrieval Processing from Fuzzy Databases”. Technical Reports of IECE of Japan, Vol 80, No. 204 (on Automata and Languages), pp. 45–54, AL80-50 (1980).Google Scholar
  18. 18.
    M. Umano, “Freedom-O: A Fuzzy Database System”. Fuzzy Information and Decision Processes. Gupta-Sanchez edit. North-Holand Pub. Comp. (1982).Google Scholar
  19. 19.
    M. Umano, S. Fukami, “Fuzzy Relational Algebra for Possibility-Distribution-Fuzzy Relational Model of Fuzzy Data”. Journal of Intelligent Information Systems, 3, 7–27 (1994).CrossRefGoogle Scholar
  20. 20.
    L.A. Zadeh, “Fuzzy Sets as a Basis for a Theory of Possibility”. Fuzzy Sets and Systems, 1, 3–28 (1978).MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Zemankova-Leech, A. Handel, “Fuzzy Relational Databases — A Key to Expert Systems”. Köln, Germany, TüV Rheinland (1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • José Galindo
    • 1
  • Juan M. Medina
    • 2
  • Olga Pons
    • 2
  • Juan C. Cubero
    • 2
  1. 1.Dpto. Lenguajes y Ciencias de la ComputaciónUniversidad de MálagaMálagaSpain
  2. 2.Dpto. Ciencias de la Computación e I.A.Universidad de GranadaGranadaSpain

Personalised recommendations