Progress report on the disjunctive deductive database system dlv

  • Thomas Eiter
  • Nicola Leone
  • Cristinel Mateis
  • Gerald Pfeifer
  • Francesco Scarcello
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1495)


dlv is a deductive database system, based on disjunctive logic programming, which offers front-ends to several advanced KR formalisms. The system has been developed since the end of 1996 at Technische Universität Wien in an ongoing project funded by the Austrian Science Funds (FWF).

Recent comparisons have shown that dlv is nowadays a state-of-the-art implementation of disjunctive logic programming. A major strength of dlv are its advanced knowledge modelling features. Its kernel language extends disjunctive logic programming by strong negation (a la Gelfond and Lifschitz) and integrity constraints; furthermore, front-ends for the database language SQL3 and for diagnostic reasoning are available. Suitable interfaces allow dlv users to utilize base relations which are stored in external commercial database systems.

This paper provides an overview of the dlv system and describes recent advances in its implementation. In particular, the recent implementation of incremental techniques for program evaluation, as well as the use of relational join optimization strategies appear particularly relevant for deductive database applications. These techniques are suitably extended in dlv for the efficient instantiation of nonmonotonic programs.

Benchmarks on problems from different domains are also reported to give a feeling of the current system performance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Aravindan, J. Dix, and I. Niemelä. Dislop: A research project on disjunctive logic programming. AI Communications, 10(3/4):151–165, 1997.Google Scholar
  2. 2.
    F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating Object-Oriented Data Modeling with a Rule-Based Programming Paradigm. In Proceedings of 1990 ACM-SIGMOD International Conference, pages 225–236, Atlantic City, NJ, May 1990.Google Scholar
  3. 3.
    M. Cadoli, T. Eiter, and G. Gottlob. Default Logic as a Query Language. IEEE Transactions on Knowledge and Data Engineering, 9(3):448–463, May/June 1997.CrossRefGoogle Scholar
  4. 4.
    D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo. The LDL System Prototype. IEEE Transactions on Knowledge and Data Engineering, 2(1), 1990.Google Scholar
  5. 5.
    P. Cholewiński, V. W. Marek, and M. Truszczyński. Default Reasoning System DeReS. In Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR '96), Cambridge, Massachusetts, USA, 1996.Google Scholar
  6. 6.
    S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The dlv System: Model Generator and Application Frontends. In Proceedings of the 12th Workshop on Logic Programming (WLP '97), Research Report PMS-FB10, pages 128–137, München, Germany, September 1997. LMU München.Google Scholar
  7. 7.
    T. Eiter, G. Gottlob, and N. Leone. Abduction From Logic Programs: Semantics and Complexity. Theoretical Computer Science, 189(1–2):129–177, December 1997.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on Database Systems, 22(3):315–363, September 1997.CrossRefGoogle Scholar
  9. 9.
    T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A Deductive System for Non-monotonic Reasoning. In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings of the 4th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR '97), number 1265 in Lecture Notes in AI (LNAI), Berlin, 1997. Springer.Google Scholar
  10. 10.
    T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System dlv: Progress Report, Comparisons and Benchmarks. Technical report, Institut für Informationssysteme, TU Wien, 1998.Google Scholar
  11. 11.
    M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing, 9:365–385, 1991.MATHCrossRefGoogle Scholar
  12. 12.
    A. Kakas, R. Kowalski, and F. Toni. Abductive Logic Programming. Journal of Logic and Computation, 1993.Google Scholar
  13. 13.
    A. Kakas and P. Mancarella. Database Updates Through Abduction. In Proceedings VLDB-90, pages 650–661, 1990.Google Scholar
  14. 14.
    D. E. Knuth. The Stanford GraphBase: a platform for combinatorial computing. ACMPress, New York, 1994.MATHGoogle Scholar
  15. 15.
    N. Leone and P. Rullo. BQM: A System Integrating Logic, Objects, and Non-Monotonic Reasoning. In Invited Paper on 7th IEEE International Conference on Tools with Artificial Intelligence, Washington, November 1995.Google Scholar
  16. 16.
    N. Leone, P. Rullo, and F. Scarcello. Disjunctive stable models: Unfounded sets, fixpoint semantics and computation. Information and Computation, 135(2):69–112, June 1997.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    I. Niemelä and P. Simons. Efficient Implementation of the Well-founded and Stable Model Semantics. In Proceedings of the 1996 Joint International Conference and Symposium on Logic Programming, pages 289–303, Bonn, Germany, Sept. 1996.Google Scholar
  18. 18.
    C. S. Peirce. Abduction and induction. In J. Buchler, editor, Philosophical Writings of Peirce, chapter 11. Dover, New York, 1955.Google Scholar
  19. 19.
    Y. Peng and J. Reggia. Abductive Inference Models for Diagnostic Problem Solving. Symbolic Computation — Artificial Intelligence. Springer, 1990.Google Scholar
  20. 20.
    G. Phipps, M. A. Derr, and K. Ross. Glue-NAIL!: A Deductive Database System. In Proceedings ACM-SIGMOD Conference on Management of Data, pages 308–317, 1991.Google Scholar
  21. 21.
    D. Poole. Explanation and Prediction: An Architecture for Default and Abductive Reasoning. Computational Intelligence, 5(1):97–110, 1989.MathSciNetGoogle Scholar
  22. 22.
    R. Ramakrishnan, D. Srivastava, and S. Sudarshan. CORAL — Control, Relations and Logic. In Proceedings of the 18th VLDB Conference, Vancouver, British Columbia, Canada, 1992.Google Scholar
  23. 23.
    R. Reiter. A Theory of Diagnosis From First Principles. Artificial Intelligence, 32:57–95, 1987.MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    D. Seipel and H. Thöne. DisLog — A System for Reasoning in Disjunctive Deductive Databases. In Proceedings International Workshop on the Deductive Approach to Information Systems and Databases (DAISD'94), 1994.Google Scholar
  25. 25.
    A. X3H2 and I. DBL. (ISO-ANSI Working Draft) Foundation (SQL/Foundation) [ISO DBL:LGW-008 / ANSI X3H2-97-030], Apr. 1997. Temporarily available at Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Thomas Eiter
    • 2
  • Nicola Leone
    • 1
  • Cristinel Mateis
    • 1
  • Gerald Pfeifer
    • 1
  • Francesco Scarcello
    • 3
  1. 1.Institut für InformationssystemeTU WienWienAustria
  2. 2.Institut für InformatikUniversität Gie\enGie\en
  3. 3.ISI-CNR, c/o DEIS Università della CalabriaRendeItaly

Personalised recommendations