Real parametrization of algebraic curves

  • J. Rafael Sendra
  • Franz Winkler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1476)


There are various algorithms known for deciding the parametrizability (rationality) of a plane algebraic curve, and if the curve is rational, actually computing a parametrization. Optimality criteria such as low degrees in the parametrization or low degree field extensions are met by some parametrization algorithms. In this paper we investigate real curves. Given a parametrizable plane curve over the complex numbers, we decide whether it is in fact real. Furthermore, we discuss methods for actually computing a real parametrization for a parametrizable real curve.


Real Parametrization Plane Curve Double Point Symbolic Computation Algebraic Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AB88]
    Abhyankar S.S, Bajaj C.L., (1988), Automatic parametrization of rational curves and surfaces III: Algebraic plane curves. Computer Aided Geometric Design 5, 309–321.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [Ga59]
    Gantmacher F.R., (1959), The Theory of Matrices. Chelsea, New York.zbMATHGoogle Scholar
  3. [HH90]
    Hilbert D., Hurwitz A. (1890), über die Diophantischen Gleichungen vom Geschlecht Null. Acta math. 14, 217–224.CrossRefMathSciNetGoogle Scholar
  4. [HW98]
    Hillgarter E., Winkler F. (1998), Points on algebraic curves and the parametrization problem. In: D. Wang (ed.), Automated Deduction in Geometry, 185–203, Lecture Notes in Artif. Intell. 1360, Springer Verlag Berlin Heidelberg.Google Scholar
  5. [vH97]
    van Hoeij M. (1997), Rational parametrizations of algebraic curves using a canonical divisor. J. Symbolic Computation 23/2&3, 209–227.CrossRefGoogle Scholar
  6. [IR82]
    Ireland K., Rosen R. (1982), A classical introduction to modern number theory. Springer Verlag, Graduate Texts in Mathematics, New York.Google Scholar
  7. [MSW96]
    Mňuk M., Sendra J.R., Winkler F. (1996), On the complexity of parametrizing curves. BeitrÄge zur Algebra und Geometrie 37/2, 309–328.Google Scholar
  8. [MW96]
    Mňuk M., Winkler F. (1996), CASA — A System for Computer Aided Constructive Algebraic Geometry. In: J. Calmet and C. Limongelli (eds.), Proc. Internat. Symp. on Design and Implementation of Symbolic Computation Systems (DISCO’96), 297–307, LNCS 1128, Springer Verlag Berlin Heidelberg New York.Google Scholar
  9. [RS95]
    Recio T., Sendra J.R. (1995), Reparametrización real de curvas reales paramétricas. Proc. EACA’95, 159–168, Univ. de Cantabria, Santander, Spain.Google Scholar
  10. [RS97a]
    Recio T., Sendra J.R. (1997), Real parametrizations of real curves. J. Symbolic Computation 23/2&3, 241–254.MathSciNetCrossRefGoogle Scholar
  11. [RS97b]
    Recio T., Sendra J.R. (1997), A really elementary proof of real Lüroth’s theorem. Revista Matemática de la Universidad Complutense de Madrid 10, 283–291.zbMATHMathSciNetGoogle Scholar
  12. [SW91]
    Sendra J.R., Winkler F. (1991), Symbolic parametrization of curves. J. Symbolic Computation 12/6, 607–631.MathSciNetCrossRefGoogle Scholar
  13. [SW97]
    Sendra J.R., Winkler F. (1997), Parametrization of algebraic curves over optimal field extensions. J. Symbolic Computation 23/2&3, 191–207.MathSciNetCrossRefGoogle Scholar
  14. [Wa50]
    Walker R.J. (1950), Algebraic curves. Princeton Unversity Press.Google Scholar
  15. [Wi96]
    Winkler F. (1996), Polynomial algorithms in computer algebra. Springer-Verlag Wien New York.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. Rafael Sendra
    • 1
  • Franz Winkler
    • 2
  1. 1.Dpto de MatemáticasUniversidad de Alcalá de HenaresMadridSpain
  2. 2.RISC-LinzJ. Kepler UniversitÄt LinzLinzAustria

Personalised recommendations