Skip to main content

Optimising propositional modal satisfiability for description logic subsumption

  • Conference paper
  • First Online:
Artificial Intelligence and Symbolic Computation (AISC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1476))

Abstract

Effective optimisation techniques can make a dramatic difference in the performance of knowledge representation systems based on expressive description logics. Because of the correspondence between description logics and propositional modal logic many of these techniques carry over into propositional modal logic satisfiability checking. Currently-implemented representation systems that employ these techniques, such as FaCT and DLP, make effective satisfiable checkers for various propositional modal logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical analysis of optimization techniques for terminological representation systems or: Making KRIS get a move on. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference (KR’92), pages 270–281. Morgan-Kaufmann Publishers, San Francisco, CA, 1992. Also available as DFKI RR-93-03.

    Google Scholar 

  2. F. Baader and B. Hollunder. Kris: Knowledge representation and inference system. SIGART Bulletin, 2(3):8–14, 1991.

    Google Scholar 

  3. A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems: Experimental and Theoretical Results. PhD thesis, University of Oregon, 1995.

    Google Scholar 

  4. P. Balsiger and A. Heuerding. Comparison of theorem provers for modal logics — introduction and summary. In H. de Swart, editor, Automated Reasoning with Analytic Tableaux and Related Methods: International Conference Tableaux’98, number 1397 in Lecture Notes in Artificial Intelligence, pages 25–26. Springer-Verlag, May 1998.

    Google Scholar 

  5. P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive description logics: a preliminary report. In Gerard Ellis, Robert A. Levinson, Andrew Fall, and Veronica Dahl, editors, Knowledge Retrieval, Use and Storage for Efficiency: Proceedings of the First International KRUSE Symposium, pages 28–39, 1995.

    Google Scholar 

  6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications of the ACM, 5:394–397, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Donini, G. De Giacomo, and F. Massacci. EXPTIME tableaux for ACC. In L. Padgham, E. Franconi, M. Gehrke, D. L. McGuinness, and P. F. Patel-Schneider, editors, Collected Papers from the International Description Logics Workshop (DL’96), number WS-96-05 in AAAI Technical Report, pages 107–110. AAAI Press, Menlo Park, California, 1996.

    Google Scholar 

  8. J. W. Freeman. Hard random 3-SAT problems and the Davis-Putnam procedure. Artificial Intelligence, 81:183–198, 1996.

    Article  MathSciNet  Google Scholar 

  9. F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for ALC. In L. C. Aiello, J. Doyle, and S. Shapiro, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Fifth International Conference (KR ’96), pages 304–314. Morgan Kaufmann Publishers, San Francisco, CA, November 1996.

    Google Scholar 

  10. A. Heuerding and S. Schwendimann. A benchmark method for the propositional modal logics k, kt, s4. Technical report IAM-96-015, University of Bern, Switzerland, October 1996.

    Google Scholar 

  11. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD thesis, University of Manchester, 1997.

    Google Scholar 

  12. U. Hustadt and R. A. Schmidt. On evaluating decision procedures for modal logic. Technical Report MPI-I-97-2-003, Max-Planck-Institut Für Informatik, Im Stadtwald, D 66123 Saarbrücken, Germany, February 1997.

    Google Scholar 

  13. F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. Journal of Automated Reasoning, 4:69–100, 1988.

    Article  MathSciNet  Google Scholar 

  14. P. F. Patel-Schneider. System description: DLP. Bell Labs Research, Murray Hill, NJ, December 1997.

    Google Scholar 

  15. U. Sattler. A concept language extended with different kinds of transitive roles. In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahrestagung für Künstliche Intelligenz, number 1137 in Lecture Notes in Artificial Intelligence, pages 333–345. Springer Verlag, 1996.

    Google Scholar 

  16. K. Schild. A correspondence theory for terminological logics: Preliminary report. In Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), pages 466–471, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Calmet Jan Plaza

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horrocks, I., Patel-Schneider, P.F. (1998). Optimising propositional modal satisfiability for description logic subsumption. In: Calmet, J., Plaza, J. (eds) Artificial Intelligence and Symbolic Computation. AISC 1998. Lecture Notes in Computer Science, vol 1476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055916

Download citation

  • DOI: https://doi.org/10.1007/BFb0055916

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64960-1

  • Online ISBN: 978-3-540-49816-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics