Advertisement

Intuitionistic proof transformations and their application to constructive program synthesis

  • Uwe Egly
  • Stephan Schmitt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1476)

Abstract

We present a translation of intuitionistic sequent proofs from a multi-succedent calculus LTmc into a single-succedent calculus LT. The former gives a basis for automated proof search whereas the latter is better suited for proof presentation and program construction from proofs in a system for constructive program synthesis. Well-known translations from the literature have a severe drawback; they use cuts in order to establish the transformation with the undesired consequence that the resulting program term is not intuitive. We establish a transformation based on permutation of inferences and discuss the relevant properties with respect to proof complexity and program terms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Bates and R. L. Constable. Proofs as programs. ACM Transactions on Programming Languages and Systems, 7(1):113–136, January 1985.MATHCrossRefGoogle Scholar
  2. 2.
    W. Bibel, D. Korn, C. Kreitz, F. Kurucz, J. Otten, S. Schmitt, and G. Stolpmann. A Multi-Level Approach to Program Synthesis. In 7 th LoPSTr Workshop, LNCS, 1998.Google Scholar
  3. 3.
    R. L. Constable, S. F. Allen, and H. M. Bromley. Implementing Mathematics with the NuPRL proof development system. Prentice Hall, 1986.Google Scholar
  4. 4.
    H. B. Curry. Foundations of Mathematical Logic. Dover, Dover edition, 1977.Google Scholar
  5. 5.
    E. Eder. Relative Complexities of First Order Calculi. Vieweg, 1992.Google Scholar
  6. 6.
    G. Gentzen. Untersuchungen über das logische Schlie\en. Mathematische Zeitschrift, 39:176–210, 405–431, 1935.MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. C. Kleene. Permutability of Inferences in Gentzen’s Calculi LK and LJ. Memoirs of the AMS, 10:1–26, 1952.MATHMathSciNetGoogle Scholar
  8. 8.
    S. Maehara. Eine Darstellung der intuitionistischen Logik in der klassischen. Nagoya Mathematical Journal, 7:45–64, 1954.MATHMathSciNetGoogle Scholar
  9. 9.
    P. Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory Lecture Notes. Bibliopolis, Napoli, 1984.Google Scholar
  10. 10.
    J. Otten and C. Kreitz. A Uniform Proof Procedure for Classical and Non-classical Logics. In 20thGerman Annual Conference on AI, LNAI 1137, pp. 307–319, 1996.MathSciNetGoogle Scholar
  11. 11.
    S. Schmitt and C. Kreitz. On transforming intuitionistic matrix proofs into standard-sequent proofs. In 4thTABLEAUX Workshop, LNAI 918, pp. 106–121, 1995.MathSciNetGoogle Scholar
  12. 12.
    S. Schmitt and C. Kreitz. Converting non-classical matrix proofs into sequent-style systems. In CADE-13, LNAI 1104, pp. 418–432, 1996.Google Scholar
  13. 13.
    T. Tammet. A Resolution Theorem Prover for Intuitionistic Logic. In CADE-13, LNAI 1104, pp. 2–16, 1996.Google Scholar
  14. 14.
    A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Univ. Press, 1996.Google Scholar
  15. 15.
    L. Wallen. Automated deduction in nonclassical logics. MIT Press, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Uwe Egly
    • 1
  • Stephan Schmitt
    • 2
  1. 1.Abt. Wissensbasierte Systeme 184/3TU WienWien
  2. 2.Department of Computer ScienceCornell UniversityIthaca

Personalised recommendations