Optimizing OBDDs is still intractable for monotone functions

  • Kazuo Iwama
  • Mitsushi Nozoe
  • Shuzo Yajima
Contributed Papers Binary Decision Diagrams
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1450)


Optimizing the size of Ordered Binary Decision Diagrams is shown to be NP-complete for monotone Boolean functions. The same result for general Boolean functions was obtained by Bollig and Wegener recently.


Ordered Binary Decision Diagrams NP-completeness Monotone Functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.Alon and R.B.Boppana: The monotone circuit complexity of Boolean functions, Combinatorica 7(1)a, pp.1–22 (1987).MATHMathSciNetGoogle Scholar
  2. 2.
    B.Bollig and I.Wegener: Improving the variable ordering of OBDDs Is NP-complete, IEEE Trans. Comput. Vol.45,No.9,pp.993–1002(1996).MATHCrossRefGoogle Scholar
  3. 3.
    R.E.Bryant: Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput. Vol.C35,N0.8,pp.677–691(1986).Google Scholar
  4. 4.
    M.R.Garey, D.S.Johnson and L.Stockmeyer: Some simplified NP-complete graph problems, Theoretical Computer Science, Vol.1, pp.237–267(1976).MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    K.Hosaka, Y.Takenaga, T. Kaneda and S. Yajima: Size of ordered binary decision diagrams representing threshold functions, Theoret. Comput. Sci.180,pp.47–60 (1997).MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    S.Jukuna, A.Razborov, P.Savicky and I.Wegener: On P versus NP∩co-NP for decision trees and read-once branching problems, Proc.27nd MFCS, pp.319–326 (1997).Google Scholar
  7. 7.
    M.R.Mercer, R.Kapur and D.E.Ross: Functional approached to generating orderings for efficient symbolic representation, Proc. 29th ACM/IEEE Design Automation Conference, pp.614–619 (1992).Google Scholar
  8. 8.
    S.Muroga: Threshold logic and its applications, John Wiley & Sons (1971).Google Scholar
  9. 9.
    C.E.Shannon: The synthesis of two-terminal switching circuits, Bell Systems Tech.J. 28(1),pp.59–98(1949).MathSciNetGoogle Scholar
  10. 10.
    S. Tani, K. Hamaguchi and S. Yajima: The complexity of the optimal variable ordering problems of a shared binary decision diagram, IEICE Trans.Inf.& Syst., Vol.E79-D,No.4,pp.271–281(1996).Also, in Proc.ISAAC93.Google Scholar
  11. 11.
    E. Tardos: The gap between monotone and non-monotone circuit complexity is exponential, Combinatorica, Vol.8,No.1,pp.141–142(1988).MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    U.Zwick: A 4n lower bound on the combinational complexity of certain symmetric Boolean functions over the basis of unate dyadic Boolean functions, SIAM J. COMPUT., Vol.20,No.3,pp.499–505(1991).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Kazuo Iwama
    • 1
  • Mitsushi Nozoe
    • 1
  • Shuzo Yajima
    • 2
  1. 1.Kyoto UniversityKyotoJapan
  2. 2.Kansai UniversityOsakaJapan

Personalised recommendations