Advertisement

Gaußian elimination and a characterization of algebraic power series

  • Werner Kuich
Contributed Papers Formal Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1450)

Abstract

We show first how systems of equations can be solved by Gaußian elimination. This yields a characterization of algebraic power series and of \(\mathfrak{A}\mathfrak{l}\mathfrak{g}(A'),{\mathbf{ }}A'{\mathbf{ }} \subseteq {\mathbf{ }}A\), A a continuous semiring. In the case of context-free languages this characterization coincides with the characterization given by Gruska [7].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In: Handbook of Formal Languages (Eds.: G. Rozenberg and A. Salomaa), Springer, 1997, Vol. 1, Chapter 3, 111–174.Google Scholar
  2. 2.
    Bekic, H.: Definable operations in general algebras, and the theory of automata and flowcharts. Tech. Report, IBM Labor, Wien, 1967.Google Scholar
  3. 3.
    Bozapalidis, S.: Equational elements in additive algebras. Technical Report, Aristotle University of Thessaloniki, 1997.Google Scholar
  4. 4.
    Esik, Z.: Completeness of Park induction. Theor. Comput. Sci. 177(1997) 217–283.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Gecseg, F., Steinby, M.: Tree Languages. In: Handbook of Formal Languages (Eds.: G. Rozenberg and A. Salomaa), Springer, 1997, Vol. 3, Chapter 1, 1–68.Google Scholar
  6. 6.
    Goldstern, M.: Vervollständigung von Halbringen. Diplomarbeit, Technische Universität Wien, 1985.Google Scholar
  7. 7.
    Gruska, J.: A characterization of context-free languages. Journal of Computer and System Sciences 5(1971) 353–364.MATHMathSciNetGoogle Scholar
  8. 8.
    Karner, G.: On limits in complete semirings. Semigroup Forum 45(1992) 148–165.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Kuich, W.: The Kleene and the Parikh theorem in complete semirings. ICALP87, Lect. Notes Comput. Sci. 267(1987) 212–225.MATHMathSciNetGoogle Scholar
  10. 10.
    Kuich, W.: Semirings and formal power series: Their relevance to formal languages and automata theory. In: Handbook of Formal Languages (Eds.: G. Rozenberg and A. Salomaa), Springer, 1997, Vol. 1, Chapter 9, 609–677.Google Scholar
  11. 11.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science, Vol. 5. Springer, 1986.Google Scholar
  12. 12.
    Lausch, H., Nöbauer, W.: Algebra of Polynomials. North-Holland, 1973.Google Scholar
  13. 13.
    Sakarovitch, J.: Kleene's theorem revisited. Lect. Notes Comput. Sci. 281(1987) 39–50.MATHMathSciNetGoogle Scholar
  14. 14.
    Salomaa, A.: Formal Languages. Academic Press, 1973.Google Scholar
  15. 15.
    Thatcher, J. W., Wright, J. B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Systems Theory 2(1968) 57–81.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Wechler, W.: Universal Algebra for Computer Scientists. EATCS Monographs on Computer Science, Vol. 25. Springer, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Werner Kuich
    • 1
  1. 1.Abteilung für Theoretische Informatik Institut für Algebra und Diskrete MathematikTechnische Universität Wienösterreich

Personalised recommendations