Average-case intractability vs. worst-case intractability

  • Johannes Köbler
  • Rainer Schuler
Contributed Papers Structural Complexity
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1450)


We use the assumption that all sets in NP (or other levels of the polynomial-time hierarchy) have efficient average-case algorithms to derive collapse consequences for MA, AM, and various subclasses of P/poly. As a further consequence we show for C ∃ {P(PP), PSPACE} that C is not tractable in the average-case unless C=P.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Arvind and J. Köbler. On resource-bounded measure and pseudorandomness. In Proc. 17th Conference on Foundations of Software Technology and Theoretical Computer Science, volume 1346 of Lecture Notes in Computer Science, pages 235–249. Springer-Verlag, 1997.Google Scholar
  2. 2.
    V. Arvind, J. Köbler, and M. Mundhenk. Upper bounds for the complexity of sparse and tally descriptions. Mathematical Systems Theory, 29(1):63–94, 1996.MATHMathSciNetGoogle Scholar
  3. 3.
    V. Arvind, J. Köbler, and R. Schuler. On helping and interactive proof systems. International Journal of Foundations of Computer Science, 6(2):137–153, 1995.MATHCrossRefGoogle Scholar
  4. 4.
    L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has twoprover interactive protocols. Computational Complexity, 1:1–40, 1991.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318, 1993.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, second edition, 1995.Google Scholar
  7. 7.
    J.L Balcázar and U. Schöning. Logarithmic advice classes. Theoretical Computer Science, 99:279–290, 1992.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In Proc. 7th Symposium on Theoretical Aspects of Computer Science, volume 415 of Lecture Notes in Computer Science, pages 37–48. Springer-Verlag, 1990.Google Scholar
  9. 9.
    R. Beigel and J. Gill. Counting classes: thresholds, parity, mods, and fewness. Theoretical Computer Science, 103:3–23, 1992.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case complexity. Journal of Computer and System Sciences, 44:193–219, 1992.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    N. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries that are sufficient for exact learning. Journal of Computer and System Sciences, 52:421–433, 1996.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Cai and L. A. Hemachandra. On the power of parity polynomial time. Mathematical Systems Theory, 23:95–106, 1990.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    J.-Y. Cai and A. Selman. Fine separation of average time complexity classes. In Proc. 13th Symposium on Theoretical Aspects of Computer Science, volume 1046 of Lecture Notes in Computer Science, pages 331–343. Springer-Verlag, 1996.Google Scholar
  14. 14.
    J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM Journal on Computing, 22:994–1005, 1993.MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Gavaldà. Bounding the complexity of advice functions. Journal of Computer and System Sciences, 50(3):468–475, 1995.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    F. Green, J. Köbler, K. Regan, T. Schwentick, and J. Torán. The power of the middle bit of a #P function. Journal of Computer and System Sciences, 50(3):456–467, 1995.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Gurevich. Average case completeness. Journal of Computer and System Sciences, 42(3):346–398, 1991.MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    U. Hertrampf. Relations among MOD-classes. Theoretical Computer Science, 74:325–328, 1990.MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Impagliazzo. A personal view of average-case complexity. In Proc. 10th Structure in Complexity Theory Conference, pages 134–147. IEEE Computer Society Press, 1995.Google Scholar
  20. 20.
    R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform complexity classes. In Proc. 12th ACM Symposium on Theory of Computing, pages 302–309. ACM Press, 1980.Google Scholar
  21. 21.
    J. Köbler. Locating P/poly optimally in the extended low hierarchy. Theoretical Computer Science, 134(2):263–285, 1994.MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Köbler and R. Schuler. Average-case intractability vs. worst-case intractability. See ftp://theorie.informatik.uni-ulm.de/pub/papers/ti/ap.ps.gz.Google Scholar
  23. 23.
    J. Köbler and S. Toda. On the power of generalized MOD-classes. Mathematical Systems Theory, 29(1):33–46, 1996.MATHMathSciNetGoogle Scholar
  24. 24.
    J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. In Proc. 22nd International Colloquium on Automata, Languages, and Programming, volume 944 of Lecture Notes in Computer Science, pages 196–207. Springer-Verlag, 1995.Google Scholar
  25. 25.
    L. Levin. Average case complete problems. SIAM Journal on Computing, 15:285–286, 1986.MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Li and P.M.B. Vitányi. Average case complexity under the universal distribution equals worst-case complexity. Information Processing Letters, 42:145–149, 1992.MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    R. J. Lipton. New directions in testing. In J. Feigenbaum and M. Merritt, editors, Distributed Computing and Cryptography, volume 2 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1991.Google Scholar
  28. 28.
    J. H. Lutz. Observations on measure and lowness for δ2P. Theory of Computing Systems, 30:429–442, 1997.MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and A. L. Selman, editors, Complexity Theory Retrospective II, pages 225–260. Springer-Verlag, 1997.Google Scholar
  30. 30.
    J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin: separating reducibilities if NP is not small. Theoretical Computer Science, 164:141–163, 1996.MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    P.B. Milterson. The complexity of malign measures. SIAM Journal on Computing, 22(1):147–156, 1993.MathSciNetCrossRefGoogle Scholar
  32. 32.
    P. Orponen, K. Ko, U. Schöning, and O. Watanabe. Instance complexity. Journal of the ACM, 41(1):96–121, 1994.MATHCrossRefGoogle Scholar
  33. 33.
    R. E. Schapire. The emerging theory of average-case complexity. Technical Report TM-431, Massachusetts Institut of Technology, 1990.Google Scholar
  34. 34.
    U. Schöning. Complexity and Structure, volume 211 of Lecture Notes in Computer Science. Springer-Verlag, 1986.Google Scholar
  35. 35.
    R. Schuler. Truth-table closure and Turing closure of average polynomial time have different measures in EXP. In Proc. 11th Annual IEEE Conference on Computational Complexity, pages 190–197. IEEE Computer Society Press, 1996.Google Scholar
  36. 36.
    R. Schuler and O. Watanabe. Towards average-case complexity analysis of NP optimization problems. In Proc. 10th Structure in Complexity Theory Conference, pages 148–159. IEEE Computer Society Press, 1995.Google Scholar
  37. 37.
    R. Schuler and T. Yamakami. Sets computable in polynomial time on average. In Proc. 1st International Computing and Combinatorics Conference, volume 959 of Lecture Notes in Computer Science, pages 400–409. Springer-Verlag, 1995.Google Scholar
  38. 38.
    R. Schuler and T. Yamakami. Structural average case complexity. Journal of Computer and System Sciences, 52:308–327, 1996.MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    O. Watanabe, 1996. Personal communication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Johannes Köbler
    • 1
  • Rainer Schuler
    • 1
  1. 1.Theoretische InformatikUniversität UlmUlmGermany

Personalised recommendations