On counting ac0 circuits with negative constants

  • Andris Ambainis
  • David Mix Barrington
  • Huong LêThanh
Contributed Papers Circuit Complexity
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1450)


Continuing the study of the relationship between TC 0, AC 0 and arithmetic circuits, started by Agrawal et al. [1], we answer a few questions left open in this paper. Our main result is that the classes DiffAC 0 and GapAC 0 coincide, under poly-time, log-space, and log-time uniformity. From that we can derive that under logspace uniformity, the following equalities hold: etse409-01etse


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Agrawal, E. Allender, S. Datta, On TC 0, AC 0 and Arithmetic Circuits. In Proceedings of the 12th Annual IEEE Conference on Computational Complexity, pp:134–148, 1997.Google Scholar
  2. 2.
    E. Allender, R. Beals, M. Ogihara, The complexity of matrix rank and feasible systems of linear equations. In Proceedings of the 28th ACM Symposium on Theory of Computing (STOC), pp:161–167, 1996.Google Scholar
  3. 3.
    C. álvarez, B. Jenner, A very hard logspace counting class. Theoretical Computer Science, 107:3–30, 1993.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    D. A. M. Barrington, N. Immerman, Time, Hardware, and Uniformity. In L. A. Hemaspaandra and A. L. Selman, eds., Complexity Theory Retrospective II, Springer Verlag, pp:1–22, 1997.Google Scholar
  5. 5.
    D. A. M. Barrington, N. Immerman, and H. Straubing, On Uniformity Within NC 1. Journal of Computer and System Science, 41:274–306, 1990.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Beame, S. Cook, H. J. Hoover, Log depth circuits for division and related problems. SIAM Journal on Computing, 15:994–1003, 1986.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Caussinus, P. McKenzie, D. Thérien, H. Vollmer, Nondeterministic NC 1. In Proceedings of the 11th Annual IEEE Conference on Computational Complexity, pp:12–21, 1996.Google Scholar
  8. 8.
    S. A. Fenner, L. J. Fortnow, S. A. Kurtz, Gap-definable counting classes. Journal of Computer and System Science, 48(1):116–148, 1995.MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Köbler, U. Schöning, J. Torán, On counting and approximation. Acta Informatica, 26:363–379, 1989.MATHMathSciNetGoogle Scholar
  10. 10.
    B. Litow, On iterated integer product. Information Processing Letters, 42(5):269–272, 1992.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Mahajan, V. Vinay, Determinant: Combinatorics, Algorithms and Complexity. In Proceedings of SODA'97. ftp://ftp.eccc.unitrier.de/pub/eccc/reports/1997/TR97-036/index.htmlGoogle Scholar
  12. 12.
    A. A. Razborov, Lower bound on size of bounded depth networks over a complete basis with logical addition. Mathematicheskie Zametli, 41:598–607, 1987. English translation in Mathematical Notes of the Academy of Sciences of the USSR, 41:333–338, 1987.MATHMathSciNetGoogle Scholar
  13. 13.
    R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of the 19th ACM Symposium on the Theory of Computing (STOC), pp:77–82, 1987.Google Scholar
  14. 14.
    S. Toda, Classes of arithmetic circuits capturing the complexity of computing the determinant. IEICE Transactions, Informations and Systems, E75-D:116–124, 1992.Google Scholar
  15. 15.
    S. Toda, Counting problems computationally equivalent to the determinant. Manuscript.Google Scholar
  16. 16.
    L. Valiant, The complexity of computing the permanent. Theoretical Computer Science, 8:189–201, 1979.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Venkateswaran, Circuit definitions of non-deterministic complexity classes. SIAM Journal on Computing, 21:655–670, 1992.MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    V. Vinay, Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In Proceedings of the 6th IEEE Structure in Complexity Theory Conference, pp:270–284, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Andris Ambainis
    • 1
  • David Mix Barrington
    • 2
  • Huong LêThanh
    • 3
  1. 1.Computer Science DivisionUniversity of California at BerkeleyUSA
  2. 2.Computer Science DepartmentUniversity of MassachusettsUSA
  3. 3.Laboratoire de Recherche en InformatiqueUniversité de Paris-SudFrance

Personalised recommendations