Advertisement

The equivalence problem for deterministic pushdown transducers into abelian groups

  • Géraud Sénizergues
Contributed Papers Automata and Transducers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1450)

Abstract

The equivalence problem for deterministic pushdown transducers with inputs in a free monoid X * and outputs in an abelian group H is shown to be decidable. The result is obtained by constructing a complete formal system for equivalent pairs of deterministic rational series on the variable alphabet associated with the dpdt M with coefficients in the monoid H 0 (the monoid obtained by adjoining a zero to the group H).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Berstel and C. Reutenauer. Rational Series and their Languages. Springer, 1988.Google Scholar
  2. 2.
    A.P. Biryukov. Some algorithmic problems for finitely defined commutative semigroups. Siberian Math. Journal 8, pages 384–391, 1967.MATHGoogle Scholar
  3. 3.
    C. Choffrut. A generalization of Ginsburg and Rose's characterisation of gsm mappings. In Proceedings ICALP 79, pages 88–103. LNCS, Springer-Verlag, 1979.Google Scholar
  4. 4.
    B. Courcelle. An axiomatic approach to the Korenjac-Hopcroft algorithms. Math. Systems theory, pages 191–231, 1983.Google Scholar
  5. 5.
    R.H. Gilman. Presentations of groups and monoids. Journal of Algebra 57, pages 544–554, 1979.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Harju and J. Karhumäki. The equivalence problem of multitape finite automata. TCS 78, pages 347–355, 1991.MATHCrossRefGoogle Scholar
  7. 7.
    M.A. Harrison, I.M. Havel, and A. Yehudai. On equivalence of grammars through transformation trees. TCS 9, pages 173–205, 1979.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    O. Ibarra. The unsolvability of the equivalence problem for ε-free ngsm's with unary input (output) alphabet and applications. In Proceedings FOCS 78, pages 74–81. IEEE, 1978.Google Scholar
  9. 9.
    O.H. Ibarra and L. Rosier. On the decidability of equivalence problem for deterministic pushdown transducers. Information Processing Letters 13, pages 89–93, 1981.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    K. Kulik II and J. Karhumäki. Synchronizable deterministic pushdown automata and the decidability of their equivalence. Acta Informatica 23, pages 597–605, 1986.MathSciNetCrossRefGoogle Scholar
  11. 11.
    W. Kuich and D. Raz. On the multiplicity equivalence problem for context-free grammars. In Important Results and trends in Theoretical Computer Science (Colloquium in Honor of Aarto Salomaa), pages 232–250. Springer-Verlag, LNCS 812, 1994.Google Scholar
  12. 12.
    Y.V. Meitus. The equivalence problem for real-time strict deterministic pushdown automata. Cybernetics and Systems analysis, pages 581–594, 1990. Original article (in russian) in Kibernetika 5, p.14-25, 1989.Google Scholar
  13. 13.
    G. Sénizergues. L(A) = L(B)? In Proceedings INFINITY 97, pages 1–26. Electronic Notes in Theoretical Computer Science 9, URL: http://www.elsevier.nl/locate/entcs/volume9.html, 1997.Google Scholar
  14. 14.
    G. Sénizergues. L(A) = L(B)? Technical report, corrected and extended version of nr 1161-97, LaBRI, Université Bordeaux I, can be accessed at URL:http://www.labri.u-bordeaux.fr/~ges, 1998.Google Scholar
  15. 15.
    M. Taiclin. Algorithmic problems for commutative semigroups. Soviet Math. Dokl., pages 201–204, 1968.Google Scholar
  16. 16.
    E. Tomita and K. Seino. A direct branching algorithm for checking the equivalence of two deterministic pushdown transducers, one of which is real-time strict. Theoretical Computer science, pages 39–53, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Géraud Sénizergues
    • 1
  1. 1.LaBRIUniversité de Bordeaux ITalenceFrance

Personalised recommendations