Advertisement

Iterated length-preserving rational transductions

Extended abstract
  • Michel Latteux
  • David Simplot
  • Alain Terlutte
Contributed Papers Automata and Transducers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1450)

Abstract

The purpose of this paper is the study of the smallest family of transductions containing length-preserving rational transductions and closed under union, composition and iteration. We give several characterizations of this class using restricted classes of length-preserving transductions, by showing the connections with “context-sensitive transductions” and transductions associated with recognizable picture languages. We also study the class obtained by only using length-preserving rational functions and we show the relations with “deterministic context-sensitive transductions”.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, A., and Latteux, M.: A new proof of two theorems about rational transductions. Theoretical Computer Science 8, 2 (1979), 261–263.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbücher, Stuttgart, 1979.MATHGoogle Scholar
  3. 3.
    Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New York, 1974.MATHGoogle Scholar
  4. 4.
    Elgot, C. C., and Mezei, J. E.: On relations defined by generalized finite automata. IBM Journal of Research and Development 9 (1965), 47–68.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Giammarresi, D., and Restivo, A.: Two-dimensional languages. In Handbook of Formal Languages, A. Salomaa and G. Rozenberg, Eds., vol. 3. Springer-Verlag, Berlin, 1997, pp. 215–267.Google Scholar
  6. 6.
    Greibach, S. A.: Full AFL's and nested iterated substitution. Information and Control 16, 1 (1970), 7–35.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kuroda, S.-Y.: Classes of languages and linear bounded automata. Information and Control 7, 2 (1964), 207–223.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Latteux, M., and Simplot, D.: Context-sensitive string languages and recognizable picture languages. Information and Computation 138, 2 (1997), 160–169.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Latteux, M., Simplot, D., and Terlutte, A.: Iterated length-preserving transductions. Tech. Rep. it-312, L.I.F.L., Univ. Lille 1 France, March 1998.Google Scholar
  10. 10.
    Mezei, J., and Wright, J. B.: Algebraic Automata and Context-Free Sets. Information and Control 11, 2–3 (1967), 3–29.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Nivat, M.: Transductions des langages de Chomsky. Ann. de l'Inst. Fourier 18 (1968), 339–456.MATHMathSciNetGoogle Scholar
  12. 12.
    Schützenberger, M. P.: Sur les relations rationnelles entre monodes libres. Theoretical Computer Science 3, 2 (1976), 243–259.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Turakainen, P.: Transducers and compositions of morphisms and inverse morphisms. In Studies in honour of Arto Kustaa Salomaa on the occasion of his fiftieth birthday (1984), vol. 186 of Ann. Univ. Turku. Ser. A I, pp. 118–128.MATHMathSciNetGoogle Scholar
  14. 14.
    Wood, D.: Iterated α-NGSM maps and γ systems. Information and Control 32, 1 (1976), 1–26.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Michel Latteux
    • 1
  • David Simplot
    • 1
  • Alain Terlutte
    • 1
  1. 1.C.N.R.S. U.R.A. 369L.I.F.L. Université de Lille IVilleneuve d'Ascq CedexFrance

Personalised recommendations