Advertisement

On one-pass term rewriting

  • Zoltán Fülöp
  • Eija Jurvanen
  • Magnus Steinby
  • Sándor Vágvölgyi
Contributed Papers Rewriting
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1450)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Avenhaus. Reduktionssysteme. Springer, 1995.Google Scholar
  2. 2.
    M. Dauchet and F. De Comite. A gap between linear and non-linear term-rewriting systems. In RTA-87, LNCS 256. Springer, 1987, 95–104.Google Scholar
  3. 3.
    N. Dershowitz and J.-P. Jouannaud. Rewrite Systems, volume B of Handbook of Theoretical Computer Science, chapter 6, pages 243–320. Elsevier, 1990.Google Scholar
  4. 4.
    A. Deruyver and R. Gilleron. The reachability problem for ground TRS and some extensions. In TAPSOFT'89, LNCS 351. Springer, 1989, 227–243.Google Scholar
  5. 5.
    J. Engelfriet and E. M. Schmidt. IO and OI. Part I. J. Comput. Syst. Sci., 15(3):328–353, 1977. Part II. J. Comput. Syst. Sci., 16(1):67–99, 1978.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    F. Gécseg and M. Steinby. Tree automata. Akadémiai Kiadó, Budapest, 1984.MATHGoogle Scholar
  7. 7.
    F. Gécseg and M. Steinby. Tree Languages, volume 3 of Handbook of Formal Languages, chapter 1, pages 1–68. Springer, 1997.Google Scholar
  8. 8.
    R. Gilleron. Decision problems for term rewriting systems and recognizable tree languages. In STACS'91, LNCS 480. Springer, 1991, 148–159.Google Scholar
  9. 9.
    R. Gilleron and S. Tison. Regular tree languages and rewrite systems. Fundam. Inf., 24(1,2):157–175, 1995.MATHMathSciNetGoogle Scholar
  10. 10.
    D. Hofbauer and M. Huber. Linearizing term rewriting systems using test sets. J. Symb. Comput., 17(1):91–129, 1994.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    G. Kucherov and M. Tajine. Decidability of regularity and related properties of ground normal form languages. Inf. Comput., 118(1):91–100, 1995.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Vágvölgyi and R. Gilleron. For a rewrite system it is decidable whether the set of irreducible, ground terms is recognizable. Bull. EATCS, 48:197–209, 1992.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Zoltán Fülöp
    • 1
  • Eija Jurvanen
    • 2
  • Magnus Steinby
    • 3
  • Sándor Vágvölgyi
    • 4
  1. 1.Department of Computer ScienceJózsef Attila UniversitySzegedHungary
  2. 2.Turku Centre for Computer ScienceTurkuFinland
  3. 3.Turku Centre for Computer Science, and Department of MathematicsUniversity of TurkuTurkuFinland
  4. 4.Department of Applied InformaticsJózsef Attila UniversitySzegedHungary

Personalised recommendations